## Dependency-based Convolutional Neural Networks for Sentence Embedding



## Mingbo Ma Liang Huang Bing Xiang Bowen Zhou CUNY IBM T. J. Watson



ACL 2015 Beijing



## **Convolutional Neural Network for NLP**



# Kalchbrenner et al. (2014) and Kim (2014) apply CNNs to sentence modeling

- alleviates data sparsity by word embedding
- sequential order (sentence) instead of spatial order (image)

### Should use more linguistic and structural information!

### **Sequential convolution**





### **Sequential convolution**

















## Try different convolution filters and repeat the same process









Example: Question Type Classification (TREC)

### **Sequential Convolution: Location**

## What is Hawaii 's state flower?

**Gold standard: Entity** 















- Traditional convolution operates in surface order
- Cons: No structural information is captured No long distance relationships

## **Dependency-based Convolution**

### Sequential convolution:

- Traditional convolution operates in surface order
- Cons: No structural information is captured No long distance relationships

### Structural Convolution:

- operates the convolution filters on dependency tree
- more "important" words are convolved more often
- long distance relationships is naturally obtained



convolution direction











#### dependency convolution

















Try different **Bigram** convolution filters and repeat the same process



















## Trigram Convolution on Trees












### follow the same steps as before...

## **Convolution on Tree**



#### convolution direction

more important words are convolved more often!

### **Convolution on Tree**



convolution direction



Max pooling

### **Convolution on Tree**





## **Convolution on Siblings**

Besides convolution on ancestor path, we also can capture conjunction information from siblings



## Experiments

#### Tasks:

- Sentimental analysis
- Question classification

#### Datasets:

| Tasks          | Dataset | # Classes | Size  | Testset |
|----------------|---------|-----------|-------|---------|
| Sentimental    | MR      | 2         | 10662 | 10-CV   |
| Analysis       | SST1    | 5         | 11855 | 2210    |
| Question       | TREC    | 6         | 5952  | 500     |
| Classification | TREC-2  | 50        | 5952  | 500     |

### Sentimental Analysis Data Examples

Sentimental analysis from Rotten Tomatoes (MR & SST-I)

straightforward statements: simplistic, silly and tedious

Negative

#### subtle statements:

the film tunes into a grief that could lead a Positive man across centuries

#### sentences with adversative:

not for everyone, but for those with whom it Positive will connect, it's a nice departure from standard moviegoing fare

### **Sentimental Analysis Experiments Results**

| Category             | Model                                        | MR   | SST-1 |
|----------------------|----------------------------------------------|------|-------|
|                      | ancestor                                     | 80.4 | 47.7  |
| This work            | ancestor+sibling                             | 81.7 | 48.3  |
|                      | ancestor+sibling+sequential                  | 81.9 | 49.5  |
|                      | CNNs-non-static (Kim '14) – baseline         | 81.5 | 48.0  |
| CNNs                 | <b>CNNs-multichannel (Kim '14)</b>           | 81.1 | 47.4  |
|                      | Deep CNNs (Kalchbrenner+ '14)                | -    | 48.5  |
|                      | Recursive Autoencoder (Socher+ '11)          | 77.7 | 43.2  |
| <b>Recursive NNs</b> | <b>Recursive Neural Tensor (Socher+ '13)</b> | _    | 45.7  |
|                      | Deep Recursive NNs (Irsoy+ '14)              | -    | 49.8  |
| <b>Recurrent NNs</b> | LSTM on tree (Zhu+ '15)                      | 81.9 | 48.0  |
| Other                | Paragraph-Vec (Le+ '14)                      | _    | 48.7  |

### **Question Classification Examples**

| Sentence                                             | Top-level<br>(TREC) | Fine-grained<br>(TREC-2) |
|------------------------------------------------------|---------------------|--------------------------|
| How did serfdom develop in and then leave Russia?    | DESC                | manner                   |
| What is Hawaii 's state flower ?                     | ENTY                | plant                    |
| What sprawling U.S. state boasts the most airports ? | LOC                 | state                    |
| When was Algeria colonized ?                         | NUM                 | date                     |
| What person 's head is on a dime ?                   | HUM                 | ind                      |
| What does the technical term ISDN mean ?             | ABBR                | exp                      |

### **Question Classification Experiments Results**

| Category   | Model                                | TREC | TREC2 |
|------------|--------------------------------------|------|-------|
| This work  | ancestor                             | 95.4 | 88.4  |
|            | ancestor+sibling                     |      | 89.0  |
|            | ancestor+sibling+sequential          | 95.4 | 88.8  |
| CNNs       | CNNs-non-static (Kim '14) — baseline | 93.6 | 86.4  |
|            | CNNs-multichannel (Kim '14)          | 92.2 | 86.0  |
|            | Deep CNNs (Kalchbrenner+ '14)        | 93.0 | _     |
| Hand-coded | SVMs (Silva+ '11)*                   | 95.0 | 90.8  |

we achieved the highest published accuracy on TREC.

## Error Analysis :-)

Cases which we do better than Baseline:



## Error Analysis :-(

#### Cases which we make mistakes:



Cases which we and baseline make mistakes:



## Conclusions

Pros:

- Dependency-based convolution captures longdistance information.
- It outperforms sequential CNN in all four datasets.
  - highest published accuracy on TREC.

Cons:

• Our model's accuracy depends on parser quality.

# Deep Learning can and should be combined with linguistic intuitions.



### Thank you !