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Abstract—In this paper we present a novel generalization
of Sammon’s Mapping (SM), which is a popular, metric
multi-dimensional scaling technique used in data analysis and
visualization. The new approach, namely the Kernel-based
Sammon Mapping (KSM), yields the classic SM and other much
related techniques as special cases. Apart from being able to
approximate distance-preserving projections, it can also learn to
metrically represent arbitrarily-defined dissimilarities or simi-
larities between samples. Moreover, it can handle equally well
numeric, categorical or mixed-type data. It is able to accomplish
all this by modeling its projections as linear combinations of
appropriate kernel functions. We report experimental results,
which showcase KSM’s capabilities in visually representing
several meaningful relationships between samples of selected
datasets.

I. INTRODUCTION

Exploratory data analysis often relies on visualizing high-
dimensional samples to gain understanding about their gen-
eration process, their nature and the inter-sample rela-
tionships. In a 1938 seminal paper, Young and House-
holder [1] developed Multidimensional Scaling (MDS)
as a distance-preserving visualization method for high-
dimensional datasets. Since then, a large variety of MDS-
based techniques has appeared in the literature. In specific,
the family of MDS approaches can be grouped into two major
sub-categories: metric and non-metric. Metric MDS attempts
to preserve distances or similarities, while non-metric only
preserves their rank order. This paper focuses on a particular
version of metric MDS referred to as Sammon’s Mapping
(SM) [2].

SM’s popularity stems mainly from its simplicity, elegance
and, of course, the very intuitive nature of its outcome, i.e.
a visual depiction, where the distances between projected
points reflect magnitudes of dissimilarity (usually, distances)
between the original samples. In this sense, SM acts as a non-
linear isometry between the original high-dimensional space
to the low-dimensional (typically, 2 or 3 dimensions) embed-
ding space. While it is capable of handling data sampled from
non-linear manifolds, the occasional use of alternative types
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of dissimilarities may further aid SM in unfolding highly-
curved manifolds. As an example, we mention the work of
Lee and Verleysen [3], which uses SM with graph distances
as an approximation to geodesic (on manifold) distances
between samples.

Nevertheless, an important drawback of SM is that it lacks
extrapolative and interpolative abilities and is, therefore,
incapable of extending its non-linear projection to samples
outside the set that was used to design the mapping. In
order to overcome this major limitation, several solutions
have been proposed, especially ones that attempt to learn
and approximate the mapping using the design set and its
image via the SM as examples for fitting a projection model.
Three contributions that are worth mentioning at this point
are SAMMAN [4] and the work of deRidder and Duin [5],
both of which utilize a Multi-layer Perceptron to learn the
embedding map, as well as the work of Webb [6], which
employs a Radial Basis Function (RBF) Neural Network in
strict interpolation mode for the same purpose.

In this work, we introduce a generalization of SM, in
which a bank of linear kernel machines assumes the role of
the projection model responsible of learning the associated
SM. We will be referring to this generalization as Kernel-
based Sammon Mapping (KSM). First of all, we show that the
new approach subsumes the classic SM, as well as the RBF-
based approach as special cases. In order to learn the desired
non-linear projection, the model allows for the adaptation
of the linear weights and, if deemed necessary, of any
kernel function parameters as well. As a matter of fact, we
discuss a possible option for fitting KSM models efficiently.
Additionally, the nature and quality of the approximation
can be directly influenced and, possibly, controlled by the
choice of the Mercer kernel utilized. This last feature can be
highly desirable in the context of exploratory data analysis.
Yet another important advantage is the fact that it can handle
any type of data, for which a suitable inner-product kernel
has been defined. This opens up the possibility of KSM to
be used for the visualization of high-dimensional data with
categorical or mixed-type attributes, sequenced/ordered data
(like time series and micro-array data) and so forth. Finally,
let us mention that the concept of utilizing linear kernel
machines as a basis for learning the distance-preserving
project, which we present here, can be readily applied to
and extend the applicability of methods that are related to
SM, such as Curvilinear Component Analysis (CCA) [7].

This paper is organized in the following manner. Section
II provides some brief, rudimentary background related to



the Sammon Mapping. In section III, we describe the details
of the proposed projection model and we discuss methods
to train it. Among these methods, we describe an efficient
algorithm for adapting the linear weights, namely Iterative
Majorization. Section IV contains all our experimental re-
sults, whose purpose is to showcase the usefulness and
applicability of KSM. Finally, in section V we present our
concluding remarks.

II. THE SAMMON MAPPING

Let us assume we have a training set {xi}i=1,...,N consist-
ing of N samples lying on a manifold that is embedded in
some original feature space F. Note that the feature space
does not have to be necessarily of Euclidean nature, i.e.
the patterns’ attributes can also be categorical or of mixed
type. We also assume that there is a suitably defined, but
otherwise arbitrary, dissimilarity measure δ : F× F → R+.
In practice, we use distance metrics to quantify pair-wise
dissimilarities. In particular, using geodesic (with respect to
the data’s manifold) distances are of particular usefulness in
removing the manifold’s idiosyncrasies (manifold unfolding)
from the depiction of the data points’ relationships. The
Sammon Mapping (SM) seeks to identify a configuration
of points {yi}i=1,...,N in RP , where P is 2 or 3 to allow for
visualization, such that the stress function below

E =
1

2

∑
1≤i<j≤N

ui,j (di,j − δi,j)2 (1)

is minimized by adapting the y’s [8]. The stress function E
depends on the configuration through the Euclidean distances
di,j=̂ ‖yi − yj‖2, where yi is the image of xi via the SM.

The non-negative weights ui,j can play several roles in the
minimization, such as rendering the stress criterion invariant
to dissimilarity scaling and so forth. Another interesting role
is to determine, which dissimilarities should be ignored,
when learning the map, by setting the appropriate weight
equal to zero. This has important applications, when using
SM to produce an approximately topology-preserving, non-
linear projection by setting ui,j = 0, if the ith and jth

training patterns are not immediate topological neighbors, or
by setting it to a non-zero value, if they are not. Furthermore,
in exploratory visual data analysis, it allows for removing
dissimilarities between user-selected pairs from the stress
criterion to eliminate twists and curlings during interactive
manifold unfolding.

A minimization algorithm of E adjusts the locations of
the training patterns’ non-linear projections onto the lower
dimensional space RP , where the pair-wise dissimilarities in
the original feature space are portrayed by Euclidean dis-
tances with the least amount of distortion, as the embedding
dimension P may not be high enough to represent them
exactly. The stress function value is precisely measuring
this degree of distortion. If the original dissimilarities are
Euclidean distances too, the SM can be thought of as an
(approximate) isometry, i.e. a distance-preserving mapping.
On the other hand, if the dissimilarities are determined

solely by neighborhood relationships, SM can e viewed as
an approximately topology-preserving mapping.

The P × N parameters of the mapping can be adjusted
by classic unconstrained minimization approaches, such as
Conjugate Gradient or quasi-Newton methods, which are
economical in storage demands and, simultaneously, offer
reasonable convergent speeds. Nevertheless, a fast algorithm
for SM learning, that has gained significant popularity, is
iterative majorization (IM) in the guise of the SMACOF
algorithm [9]. IM generates a convergent sequence of simpler
to minimize subproblems leading to a first-order, globally
convergent algorithm, whose speed, implementation simplic-
ity and robustness make it much more attractive than the
other alternatives. Some implementation details of IM are
discussed in the next section.

Due to its nature, SM can be a very useful visualization
tool for explorative data analysis. However, it does not
provide a direct mechanism that will allow for sample inter-
polation: if a new sample becomes available, its image via
SM cannot be directly computed. SM learns correspondences
between the original samples and their non-linear projections
and not the actual, underlying projection map. This very point
motivated the works of [4], [5], and [6] to utilize Multi-Layer
Perceptrons (MLP) and Radial Basis Function (RBF) Neural
Networks for learning the projections.

Two apparent approaches for this issue are (i) first, derive
the SM for the given dataset by directly optimizing the
output configuration points and then use a regression model
to learn, off-line, the mapping of the inputs to the specific
outputs obtained from the first step, and (ii) combine these
two steps into a single one, where the generative model
is trained to minimize the stress criterion; as a byproduct
of this optimization, the output configuration can be easily
produced.

We would like to point out the advantages of the latter
approach over the former one. Overall, the first approach
entails two separate optimizations, potentially, with too many
parameters (output configuration points as well as model
parameters are adapted), when compared with the second
one (only model parameters are adjusted). Additionally, the
first step of the former approach may produce configuration
points, that the subsequent regression model may not be
able to satisfactorily match. While adding more degrees of
freedom to the regression model may alleviate somewhat this
issue, the ensuing over-parameterization of this model may
raise other concerns, such as whether the model should be
trusted, when it is used for projecting newly available sam-
ples. Indeed, the latter (one-step-learning) approach may not
guarantee the optimal fidelity in representing dissimilarities
(lowest stress function values), but it is definitely capable
of yielding trustworthy projection results, as shown in the
literature and via our experimental results of Section IV.
Thus, we consider it as the only elegant and, at the same
time, practical approach to overcoming the limitations of the
original SM. As a matter of fact, our proposed Kernel-based
Sammon Mapping also falls under this case.



III. KERNEL-BASED SAMMON MAPPING

Here we introduce the Kernel-based Sammon Mapping
(KSM), which uses linear kernel machines, one for each
projection dimension, to model the input/output relationships
of traditional Sammon Mappings.

A. The KSM Model

For KSM, the SM projection is modeled as

y = WTk(x;θ) (2)

where kT (x;θ)=̂ [k(x, c1;ψ) . . . k(x, cH ;ψ)]
T is a vector

of Mercer (inner-product) kernels evaluated at the input
pattern x ∈ F. Each kernel is parameterized by their second
arguments via the vectors ch ∈ F, which we will be referring
to as prototype vectors, as well as by a kernel parameter ψ,
which, without loss of generality, we’ll assume it is scalar
and that it has the same value for all kernels in the model.
In our notation of the k vector, we consolidate for clarity all
these parameters in a single vector parameter θ. Additionally,
W ∈ RH×P is a weight matrix that projects (not necessarily
in an orthogonal manner) the vector of kernel values onto
the low-dimensional projection space RP . In this particular
form, the KSM model features H × (P + dimF) + 1 free
parameters. A typical usage mode of KSM, which we will
be referring to as strict interpolation, is the case, where all
N training patterns xn are used as prototype vectors and,
therefore, we have H = N . In this mode, each input pattern
is compared for similarity against every training set sample
via the kernel evaluations.

KSM subsumes the classic SM (i.e. the latter is a special
case of the former), when employing the hit-or-miss kernel
shown below

k(x, ch;ψ) =

{
1 if x = ch

0 if otherwise
(3)

and using strict interpolation. In this case, the rows of W
are exactly the y’s, that is, the nth row of W constitutes the
projection of the nth training pattern xn. It is also obvious,
that the particular kernel is less useful with respect to its
interpolating capacity. Clearly, KSM also subsumes the RBF
approach proposed in [6], as the latter is obtained, when
using Gaussian kernels (shown below) in strict interpolation
mode

k(x, ch;ψ) = e−
‖x−ch‖22

s (4)

Finally, let us note that using KSM with the hyperbolic
tangent kernel shown in Equation (5) would amount to using
an MLP with one hidden layer featuring hyperbolic tangent
activation functions and an output layer of linear units to
learn a projection that represents similarities in the form of
inner products in the original feature space with appropriate
Euclidean distances in the visualization space.

k(x, ch;ψ) = tanh
(
xT ch + ψ

)
(5)

In its most general form, KSM involves kernels other than
the ones already mentioned. Via the use of Mercer kernels,
the data in the original feature space are first mapped to
another space G via a mapping φ : F → G implied by
the specific kernel, in the sense, that 〈φ(x;ψ),φ(x′;ψ)〉G =
k(x,x′;ψ), where the angle brackets stand for the inner
product in G. Then, the similarity of two input patterns
is measured by the inner product of their images in G.
Therefore, use of different kernels basically amounts to
using different similarity measures, which may give rise
to different Sammon Mappings. Dissimilarities can also be
handled by expressing them as similarities; the Gaussian
kernel in Equation (4) is a obvious example of this.

Additionally, the introduction of KSM opens the possi-
bility of handling categorical or mixed-type data, a task
that is not possible with the previous MLP and RBF-
based methods. If there is a suitably-defined kernel for a
particular non-purely-numeric dataset, KSM can be used in a
straightforward fashion to represent it in a lower dimensional
space.

Finally, let us mention that KSM does not have to be
necessarily used in strict interpolation mode (use all training
patterns as kernel prototypes). By using a number H of
prototypes, that is less than the number N of training
patterns, as well as using adjustable prototype vectors, more
economical KSM models may be obtained (especially, if
H < N/2) that are simultaneously quite robust in terms
of the quality of test pattern projections.

B. Training the KSM Model

All KSM parameters mentioned in the previous section can
be adapted using classic optimization methods, such as Gra-
dient Descent, Conjugate Gradient, quasi-Newton methods,
etc. For example, if adjustable prototype vectors are used,
the gradient of E (defined in Equation (1)) with respect to
the hth prototype vector is given as

∂E

∂ch
=

∑
1≤i<j≤N

ui,j

(
1− δi,j

di,j

)
∂∆kT

i,j

∂ch
WWT ∆ki,j (6)

where we define ∆ki,j=̂k(xi;θ) − k(xj ;θ). As a matter
of fact, in our experiments with adjustable prototypes, we
used a BFGS quasi-Newton method ([10], [11], [12] and
[13]) equipped with a line search method described in [14]
(Chapter 3, Section 4), which is capable of producing step
lengths obeying the Strong Wolfe Conditions.

While it is, indeed, possible to adjust the weights utilizing
similar methods, we chose to adapt them using a fixed-point
algorithm, that is based on an iterative majorization scheme
traditionally used in fitting SMs. The iterative algorithm,
whose adaptation to the training of KSM weights is provided
below, is reported in the literature as fast and globally
convergent.

Wt = A−1B(Wt−1)Wt−1 (7)



where we define the auxiliary matrices A and B below. Also,
for clarity we explicitly show the dependence of di,j and,
consequently, of B on the weight matrix W.

A =̂
∑

1≤i<j≤N

ui,j∆ki,j∆kT
i,j (8)

B(W) =̂
∑

1≤i<j≤N,di,j 6=0

ui,j
δi,j

di,j(W)
∆ki,j∆kT

i,j

We found that by allowing the weights in W to get ad-
justed via Equation (7) more often that the other parameters
(e.g. prototypes), the overall algorithm exhibits good stability
and speed.

IV. EXPERIMENAL RESULTS

In this particular section, we showcase and discuss ex-
perimental results obtained by utilizing KSM in tandem
with suitable kernels on 4 illustrative datasets, 1 artificial
and 3 real, namely the Teapot, MSTAR, Mushroom and
Congressional Voting Records datasets. For the first two,
we show the KSM’s potential to depict the structure of the
underlying manifold, from which the data are sampled. The
last two datasets consist of purely categorical data and are
used here to show KSM’s capability of successfully handling
such type of data.

A. Teapot Dataset

The Teapot dataset [15], [16] consists of 100 artificial,
color images of the same teapot undergoing a 360◦ rotation.
Each image of the teapot is a 560×420 pixels and represents
a sample at 3.6◦-increments in angular rotation. Figure 1
depicts three sample frames of the Teapot dataset. Due to
the small angle increment, consecutive frames differ only
slightly.
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Fig. 1. Three frames of the Teapot dataset.

Since the frames depict the same object, which is just
rotated, the obtained frames, once converted to grayscale,
should outline a non-intersecting closed curve in the 235200-
dimensional space of grayscale images. The manifold related
to the teapot’s transformation (here, rotation) should be
isomorphic to a circle. Only one degree of freedom underlies
this periodic (modulo 360◦) phenomenon. In the case of the
Teapot dataset, our goal was to use KSM to visually confirm
this fact.

For our experiments, we first converted all images into
grayscale and selected every other frame to form a training
set. For interpolation (test set), we use the remaining frames.
Due to the very nature of the problem, we used geodesic

distances (arc-length distances, to be exact) between points,
which were derived as follows: for each point the two nearest
neighbors were identified using Euclidean distances; then, a
fixed value was assigned to the geodesic distances between
immediate neighbors. The distance from the ith to the jth

training pattern was calculated as the constant amount of
geodesic distance between immediate neighbors times the
number of training patterns in between those two patterns
plus one. We used H = N/2 kernels, whose prototypes
were chosen randomly among the training set. The kernels
were of exponential type with exponents equal to the squared
geodesic distances between patterns.

In order to interpolate test patterns, geodesic distances
between training and test patterns had to be correctly es-
timated. Towards this goal, the geodesic distances of each
test pattern to its two closest neighbors among the training
patterns would be assigned as an appropriate fraction of the
geodesic distance between these two neighbors. The specific
value of this fraction depended on the test pattern’s Euclidean
distances to these two closest training patterns.
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Fig. 2. Projection of the Teapot images onto 3 dimensions using KSM.
Green solid circles represent training data, while red solid triangles mark
interpolated test patterns. As witnessed, KSM was able to place the test
patterns on or very close to a very smooth 1-dimensional manifold, the
same one passing through the training patterns. On balance, all projected
points lie on an almost-flat, closed, non-intersecting curve as expected.

The result we obtained for the Teapot dataset is presented
in Figure 2. KSM places all points, training and test samples,
on a smooth, non-intersecting, closed curve that is almost flat,
as expected. In specific, the test images are projected almost
in the middle between the projections of similar training
patterns.

B. MSTAR Database

In this application of KSM, we consider Synthetic Aper-
ture RADAR (SAR) intensity imagery from the well-known
Moving and Stationary Target Acquisition and Recognition
(MSTAR) dataset [17]. The MSTAR dataset consists of a
variety of such images for 36 target types. Each image we
considered was grayscale and of size 158× 158 pixels with



approximate resolution of 1 square foot per pixel. There
are 72 poses (different azimuths), one for every 5◦, for
each target and for a variety of depression angles. Examples
of different targets and poses, but of the same depression
angle, are shown in Figure 3. Notice that, in general, these
images may differ significantly in their intensity distribution.
Also, note that the target chip is always in the center and
surrounded by ground clutter RADAR returns.

Fig. 3. Four sample SAR images of the MSTAR dataset.

For this particular dataset, we showcase the use of KSM
to visualize the relationship between different images of the
same target at different poses and varying radar illumination.
Ideally, as these images depict the same object at different
illumination azimuth, they should fall on a simple, non-
intersecting closed curve in the 24964-dimensional space
of 158 × 158 grayscale images. As was the case with the
Teapot dataset, only one degree of freedom underlies this
phenomenon. However, these images are not mere rotations
of each other; depending on the azimuth, the target may
produce a different return, as well as a different shadow
region. Furthermore, the resolution is quite low and, judging
from the relative intensity of the clutter, the returns are
quite noisy. Thus, discovering or confirming the single closed
curve hypothesis may seem as a utopia. Nevertheless, we
shall see shortly that KSM is able to reflect it.

In specific, we picked SAR images of the 2S1 Gvozdika
(Howitzer class, self-propelled Soviet tank) and removed
the ground clutter via a target chip segmentation method
described in [18]. Of the 72 available poses for a depression
angle of 45◦ degrees, we used N = 18 for training the KSM
and another 18 for interpolating. After experimenting with
KSM and observing where SAR images, that are topological
neighbors in the grayscale space, were projected, we utilized
the following ui,j weights to untwist and flatten the manifold

ui,j =

{
1 if |j − i| mod N

3 = 0

0 if otherwise
(9)

The results showcased in Figure 4 were produced by
using H = N = 18 kernels in strict interpolation mode
using Gaussian kernels with adjustable prototypes. The figure
shows that KSM with the aforementioned settings was able to
yield a result that captures the nature of the manifold in ques-
tion, despite the dataset’s practical limitations (noisy images,
essential dependence of the images on the azimuth). Also, it
becomes apparent that the 3rd dimension is superfluous for
the mapping. Finally, one can observe that test images fall
on or very close to the same manifold as should be expected
in a close-to-ideal case.
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Fig. 4. KSM results for 2S1 tank SAR images need to be repre-
sented/visualized as Euclidean distances in a 3-dimensional space. Solid
red circles represent the training data, while hollow red circles represent
interpolated test patterns. Despite the noisy nature of the images, as well as
the dependence of RADAR returns on the particular azimuth with respect
to the target’s orientation, KSM is able to correctly interpolate previously
unseen test images among training images by positioning them very near
the same closed curve.

C. Mushroom Database

The Mushroom data set [19] consists of 8124 samples,
which can be classified as either toxic (poisonous or po-
tentially poisonous) or non-toxic (edible) mushrooms. Each
sample in the dataset consists of 22 categorical attributes. A
simple measure of dissimilarity between such samples is the
number of common attribute values they share, which can be
quantified via their pair-wise Hamming distance. Here we’ll
apply KSM to visualize in 2 dimensions some these samples
and their dissimilarities, as measured by their Hamming dis-
tances. Towards this goal, we employ the Hamming kernel,
which is defined in [20] and which has been suitably changed
to directly use the aforementioned Hamming distances. We
picked 40 arbitrary samples, 20 from each class, to fit the
KSM model and another 40 (again, 20 from each class)
to interpolate. Strict interpolation mode and an all-ones
adjacency matrix was used, while the Hamming kernel’s
λ parameter was suitably adjusted. The results are shown
in Figure 5 and demonstrate that, in this case, KSM was
able to produce an informative non-linear projection of the
categorical-natured patterns. Although KSM is not utilized in
any discriminatory capacity per se, it illustrates the fact that
the difference in value of the provided features seems to be,
indeed, powerful enough to discriminate between the two
classes of mushrooms. Unlabeled mushrooms, which were
not used in the design of the KSM model, eventually project
near samples of the same class.

D. US Congressional Voting Records Database

Finally, we apply KSM in an attempt to visually compare
the voting behavior of US Democrats and Republicans based
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Fig. 5. Results of using KSM with an appropriately modified Hamming
Kernel to represented differences in 22 attribute values via Hamming
distances between mushroom measurement samples. Diamonds (in red)
represent KSM projections of non-toxic mushroom samples, while circles
(in blue) of toxic ones. 40 solid color markers represent training data (20
from each kind) and, obviously, 40 hollow markers represent previously
unseen (test) patterns (again, 20 from each kind). The figure implies that
the features in use may indeed be good discriminators of mushrooms.

on categorical data maintained in the 1984 United States
Congressional Voting Records Database at the UCI Machine
Learning Repository [19]. This particular dataset represents
the voting records of 435 House of Representatives Mem-
bers on 16 key issues as identified by a Certified Quality
Auditor (CQA). The various issues range from immigration
to education and to handicapped infants among other things.
Votes were classified as one of three types, “yes” (y) (which
include such key words as “voted for,” “announced for” and
“paired for”), “no” (n) (which include such key words as
“voted against,” “announced against” and “paired against”),
and “unknown” (?) (which include “voted present,” “voted
present to avoid conflict of interest” and “did not vote
or otherwise make a position known”). Individual voting
records were compared to each other using a variant of the
Tanimoto metric [21], which, due to the nature of the attribute
values, amounted to an increasing function of the pair-wise
Hamming distance. Kernels were formed by exponentiating
a smaller-than-one scalar to this Tanimoto distance variant.

Figure 6 depicts the results obtained by using H = N/2
kernels, whose prototypes were picked from the training set
using a greedy combinatorial optimization approach, so to
minimize the stress criterion. The weights W, though, were
optimized through IM as usual. 10 voting records of each
kind (Democratic and Republican) constituted the training
set. After convergence, 5 samples of each kind were inter-
polated. Not surprisingly, the figure illustrates that voters,
more or less, casted votes along party lines, since the voting
records seemed to be clustered depending on party affiliation.
There is, however, a Democrat voter (#7 in the dataset) that is
projected closer to Republican voting profiles. More careful
post-inspection of the data revealed that the voter was indeed

voting very similarly to 2 other Republicans. Instances like
this reflect the real world phenomenon that voting behavior
does not always conform with party affiliation. Finally, when
the test patterns were projected, KSM positioned them along
party lines as expected.
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Fig. 6. KSM mapping for a training set of 20 voting records (of 10
Democrats and 10 Republicans), which depicted here via solid circles; red
for Republican and blue for Democrat. An additional 5 of each kind are
interpolated and depicted with hollow circles. The figure illustrates that
members of the House of Representatives predominantly vote along party
lines. The only exception is a (conservative?) Democrat outlier.

V. CONCLUSIONS

In this paper we presented a novel, kernel-based variant
of the classic Sammon Mapping (SM), which we call KSM.
This family of models allows for the visual representation of
potentially high-dimensional data as projections into a 2- or
3-dimensional space. The projection map strives to preserve
as much fidelity in representing inter-sample dissimilarities
(typically, distances) or even similarities in the original fea-
ture space as Euclidean distances in the visualization space.
KSM subsumes the classic SM and other related models
as special cases. It also extends SM’s original idea and is
able to handle data, whose attributes are not necessarily
of purely numeric nature. We have also shown a selected
set of experimental results to showcase KSM’s capabilities,
in which KSM emerges as, potentially, a very useful tool
for exploratory data analysis. Finally, the generalization of
KSM to encompass other SM-related techniques, such as
Curvilinear Component Analysis (CCA) [7], is an obvious
direction to pursue for future research.
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