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ABSTRACT

This paper presents a new multi-dimensional scaling (MDS) technique for generating approximate isometries by
way of using Radial Basis Function neural networks (RBF-NN). Metric MDS using the Sammon mapping1 is
available and commonly used to create approximate isometries in order to perform data visualization. However,
classical-Sammon mapping has the disadvantage of being unable to interpolate or extrapolate novel samples.
Other techniques, such as one using Multi-Layer Perceptron (MLP) to implement the mapping, cannot map
datasets where only dissimilarities between patterns are known. By using RBF-NNs to train a model to map
patterns from a higher dimension into a lower dimension, one can both perform dimensionality reduction on
datasets consisting only of dissimilarities and also interpolate and extrapolate novel patterns. For training,
both the delta rule, through conjugate gradient descent and the limited-memory Broyden-Fletcher-Goldfarb-
Shanno quasi-Newton method were used. Step lengths were calculated using a line search that finds step lengths
obeying the strong Wolfe conditions. Experimental results using a prototype implementation of RBF-NNs to
perform Sammon mapping demonstrate that approximate isometries can be found. They also show that datasets
consisting of only dissimilarities can still be visualized, where the reduction shows a structural relationship
between patterns. This new ability, in conjunction with the ability to interpolate and extrapolate previously
unseen patterns, creates novel opportunities for the application of MDS using Sammon mapping as a visualization
technique.

Keywords: Multi-Dimensional Scaling, Sammon Map, Radial Basis Function Neural Networks, Dimensionality-
Reduction, Data Visualization

1 INTRODUCTION

Multi-Dimensional Scaling (MDS) is a common class of techniques for performing distance preserving dimensional
reduction on datasets with dimensionality greater than three. There are two types of MDS: metric MDS and non-
metric MDS. Metric MDS attempts to preserve distances when some metric is used to measure distance, while
non-metric MDS attemps to preserve the rank order of distances and relative dissimilarities. In this paper, we will
be dealing with metric MDS. One of the most known methods for performing metric MDS, Sammon’s Non-Linear
Mapping (SNLM), is frequently used in order to visualize the dataset in lower dimensions. By preserving distances
while projecting into a lower dimensional space with SNLM, the similarities and dissimilarities between patterns
may be readily visible, if the comparison is based on some distance measure. SNLM is useful for visualizing
data in various areas of research such as data mining and psychology, where data may be multi-dimensional
and/or not purely numeric. One of its drawbacks, however, is that it cannot interpolate or extrapolate from
new patterns without re-running the training algorithm, which may take too long for the certain circumstances
it could be useful in.
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Historically, MDS was developed by Young and Householder in 19382 and further developed by Torgerson3 in
1952. The SNLM technique was developed by Sammon in 19691. While other mapping-based metric MDS
techniques, such as the one based on Multi-Layer Perceptron (MLP)4, can be used to perform Sammon mapping
while achieving the ability to interpolate new patterns, they lose their usefulness when dealing with datasets
that have only the pair-wise dissimilarities available.
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Figure 1. RBF-SNLM. The input is mapped from the original (possibly high-dimensional) feature space to an intermediate
hidden layer via Radial Basis Functions (RBFs) before being mapped to the target space, which is typically 2- or 3-
dimensional.

To address these deficiencies, we have developed a technique for performing SNLM using Radial-basis function
neural networks (RBF-NN), which we abbreviate as Radial-basis function Sammon non-linear mapping (RBF-
SNLM). Each network learns a parameterized, isometric mapping from possibly high dimension input patterns
to a lower dimensional space that can be visualized (in 2 or 3 dimensions). The structure of an RBF-NN is
shown in Fig. 1.

Using Radial basis functions (RBFs) in interpolation models was studied by Powell in 19855 and then Light in
19936. RBF-NNs were proven to be universal approximators by Park and Sandberg in 19917. Using RBF-NNs
to perform Sammon mapping allows for the ability to interpolate and extrapolate even for problems which only
offer input pattern dissimilarities rather than the exact sample values.

The scope of our research is first to develop the algorithm to train a RBF-NN to perform SNLM. We also need to
investigate ways of improving performance in convergence rate, memory use, and execution time. Additionally,
we aim to showcase the potential utility of RBF-SNLM by applying it to a select group of artificial and real-life
visualization problems. Our methodology consists of finding different types of datasets and finding methods of
applying RBF-NNs to them in order to create a Sammon mapping to an arbitrary error.

In this document, we present experiments performed on datasets using RBF-NNs. The results of our experi-
mentation show promise that, if proper methods are used to avoid local minima, RBF-NNs can train a model to
perform SNLM to an arbitrary error.



This document is organized in the following manner. Section 2 is a discussion of MDS where we elaborate more
thoroughly on SNLM and the fundamental concepts behind RBF-SNLM. In section 3, we describe our algorithm
in detail and present ways of decreasing the execution time required by RBF-SNLM. Section 4 contains the
experimental results where we describe our experiments using RBF-SNLM. There,we show our results and
analyze them. In that section, we also discuss methods for improving the quality of interpolation. Finally, in
section 5 we present our concluding remarks and suggest future work.

For the remainder for this document, we will denote N as the number of patterns in the training set, D as the
number of dimensions of the input feature space, M as the number of dimensions of the output feature space,
and H as the number of hidden units in the single hidden layer.

2 MULTI-DIMENSIONAL SCALING

2.1 Background Information

MDS is a set of statistical techniques that aims to reduce datasets from a possibly high dimensional space to a
lower one, usually 2D or 3D, for visualization purposes. It aims to preserve, as much as possible, the similarities
and dissimilarities of the patterns in the original higher dimensional data space to the mapping in the low
dimensionality target space8.

The simplest form of MDS, which we refer to as Classical-Sammon Non-Linear Mapping (Classical-SNLM)
is simply a minimization problem where the pattern locations are randomly initialized in the target mapped
space and adjusted accordingly until the error function is minimized. The error function in Classical-SNLM
is determined by the sum of the differences in the dissimilarities between each pair of training patterns in the
source space and target space. Frequently, some type of gradient of the parameters with respect to the error
function is calculated and a line search method is used in the minimization to find an appropriate step length.

Since its development, improvements have been made to the Classical-SNLM method. One of the key disad-
vantages of Classical-SNLM is the lack of interpolation/extrapolation ability. That is, given an input pattern
not used in designing the SNLM map, it is impossible to know the image of this particular pattern in the lower
dimension target space.

To overcome this constraint, researchers have used a variety of non-linear regression models to implement SNLM.
Among these are the multi-layer feedforward networks. One of the most celebrated of them is the MLP9,10,11.
The response of these models can be expressed by

y = F(x, �), (2.1)

where x is an input pattern, y is its image in the target space, and � is a vector of all the parameters in the model.
If one were to use an MLP to find a Sammon mapping, the difference between it and Classical-SNLM would
be that, rather than directly optimizing y in the minimization problem, the model parameters � are optimized
instead.

For MLP neural networks, it has been shown by Hornik, Stinchcombe, and White12 that “standard multilayer
feedforward networks with as few as one hidden layer using arbitrary squashing functions are capable of approx-
imating any Borel measurable function from one finite dimensional space to another to any desired accuracy,
provided sufficiently many hidden units are available.”

The number of units in each hidden layer of an MLP depends upon the specific function that is being approxi-
mated. While there is no known general formula for the number of hidden units required per layer to approximate
a function with arbitrary accuracy13, for function spaces, there may exist a formula for the number of necessary
hidden units, such as for the set of boolean functions. Generally, the number of hidden units is determined
through experimentation.

A disadvantage of using an MLP to find a Sammon mapping is that the precise coordinates of the points have
to be known. If only the distances (or, in general, dissimilarities) are known, then MLP cannot be used to find
the mapping. For this reason, we look at another multi-layer feedforward neural network, the RBF-NN. They



differ from MLPs in that they only have a single hidden layer. This hidden layer is non-linear in that it uses a
vector of RBFs

�(xn) = [�1(xn), �2(xn), . . . , �H(xn)]T (2.2)

to map the input patterns to a higher dimension. The RBFs are non-linear kernel activation functions that
depend on the distances from the centers C ∈ ℝH×M to the input patterns x ∈ ℝM×1. The RBFs must depend
on these distances but can be any kernel function of the form

�ℎ(xn) = �ℎ(∥xn − cℎ∥) ℎ = 1, . . . ,H;n = 1, . . . , N (2.3)

where x is an input pattern and cℎ is the vector of the centers of the ℎtℎ RBF. The interpolation matrix

Φ=̂

⎡⎢⎢⎢⎣
�1(x1, s1, c1) �1(x2, s1, c1) ⋅ ⋅ ⋅ �1(xN , s1, c1)
�2(x1, s2, c2) �2(x2, s2, c2) ⋅ ⋅ ⋅ �2(xN , s2, c2)

...
...

. . .
...

�H(x1, sH , cH) �H(x2, sH , cH) ⋅ ⋅ ⋅ �H(xN , sH , cH)

⎤⎥⎥⎥⎦ . (2.4)

contains all RBFs evaluated for each hidden node and pattern pair. Furthermore, Micchelli’s Theorem14 demon-
strates that if interpolation is desired, the interpolation matrix must be nonsingular. A common function to use
as a RBF is the Gaussian function

�ℎ(x, cℎ, sℎ) = exp

(
−∥x− cℎ∥2

sℎ

)
ℎ = 1, . . . ,H (2.5)

where sℎ is the spread parameter that determines the width of the Gaussian function �ℎ. The number of RBFs,
H, eventually influences the accuracy of the network.

The output layer of an RBF neural network is linear and the network’s response is defined as

y = Φ(x,Θ)TW (2.6)

where Θ consolidates all network parameters.

3 PROPOSED APPROACH

3.1 Radial-basis function Sammon non-linear mapping (RBF-SNLM)

Our technique of performing dimensionality reduction for data visualization trains an RBF-NN to approximate
a mapping from a dataset of a possibly large number of dimensions to a space of either one, two, or three
dimensions. The rationale for choosing RBF-NNs lies in the fact that they can interpolate/extrapolate patterns
that have not been used to design the mapping (i.e. other than training patterns). Also, in contrast to MLP, the
network’s use of RBFs to map the input patterns to the hidden layer outputs allows for the usage of datasets
where only distances between patterns are known or can be derived. Another advantage is that the model is
easy to train due to there being only one hidden layer.

We name this new technique RBF-SNLM. The points from the original database are non-linearly mapped via
the RBF functions, with each of the H RBF functions defined by

�ℎ(x, cℎ, sℎ) = exp

(
−�

2(x, cℎ)

sℎ

)
(3.1)

where �(⋅) is a dissimilarity metric. The change in Eq. 2.5 from the vector norm to a more abstract dissimilarity
in Eq. 3.1 is to emphasize the fact that datasets consisting of only dissimilarities can be used. It is important
to note that we assume no additional bias node exists in the hidden layer because the objective function will be
invariant with respect to this bias. We then perform a secondary linear mapping from the hidden layer to the
target space, as given earlier in Eq. 2.6.



It is interesting to note that RBF-SNLM can specialize to Classical-SNLM by using the RBF

�ℎ(x, cℎ, sℎ) =

{
1 : x = cℎ
0 : otherwise

(3.2)

This makes the weights matrix effectively equivalent to the target configuration optimized in Classical-SNLM.

The parameters that can be adapted in the training algorithm are the weights W, the spreads s, and the centers
matrix,

C = {c1, c2, ⋅ ⋅ ⋅ , cℎ, ⋅ ⋅ ⋅ , cH}T (3.3)

where cℎ is the center vector for hidden unit ℎ. Of course, one can choose to initialize a parameter to a specific
value and only adapt the remaining parameters.

3.2 Problem Formulation

The task of implementing a RBF neural network in order to perform SNLM requires the minimization of a
suitable objective function. The Classical-SNLM procedure initializes a random configuration of points in the
target space and adapts these points until the errors between the inter-point distances in the source space and
the corresponding distances in the target space are minimized. This is accomplished by minimizing the stress
function defined below:

E(D) =
1

2

∑
i<j

ui,j (di,j − �i,j)2 (3.4)

where di,j ∈ D and D ∈ ℝN×N is the dissimilarity matrix containing all inter-point distances of the patterns in
the target vector. �i,j ∈ ℝ is the dissimilarity between pattern i and pattern j of the training set in the original
feature space. ui,j is the adjacency value for pattern i and pattern j, which is discussed in more detail in section
3.6.

Unless it is specified otherwise, the distance metric used in this document is the Euclidean distance

di,j = ∥xi − xj∥2 (3.5)

where xi and xj are two patterns in the training set. We assume that the target patterns are produced by a
non-linear basis model as defined in Eq. 2.6. The RBF used in all of our experiments with RBF-SNLM is the
Gaussian RBF defined in Eq. 3.1.

As mentioned earlier, our proposed algorithm for implementing RBF-SNLM, shown in psuedocode in Alg. 1,
uses numerical optimization to adapt the parameters of the model such that the stress function in Eq. 3.4 is
minimized. The spreads and centers determine the interpolation matrix Φ. Multiplying ΦT by W yields the
target vector, which in turn determines the target distance matrix D. As such, the stress function is dependent
on the input dataset and, indirectly, on the weights, spreads and centers parameters.

To train the network, we use off-line (batch) learning, where we compute the gradient of all parameters and the
search directions before updating them for the current epoch. We adapt each parameter type (weights, spreads,
and centers) separately, because different parameters may require very different step lengths. That is, only after
the search directions and step lengths of all parameters are calculated, the parameters are updated. This order
makes certain that each parameter adaptation is for the same epoch.

We have experimented with a number of optimization methods, all of them dependent on the gradient of the
stress function with respect to each parameter. We have tried experimenting with the simple gradient descent,
conjugate gradient descent (see subsection 3.3.1), and the limited memory BFGS quasi-Newton method. BFGS
quasi-Newton (see subsection 3.3.2) approximates second-order information and can find a better search direction
for ill-conditioned problems. This last technique is what we have been typically using to perform experiments
with RBF-SNLM.

Once the search direction is known, RBF-SNLM performs a line search optimization to determine a near-optimal
step length � by which to adapt the parameters. We have used in our algorithm a line search returning step
lengths that satisfy the strong Wolfe conditions, but have also previously used less efficient algorithms such as



backtracking and constant step length. After adapting the parameters, we check the stopping condition to see
if the training algorithm has converged. As a stopping condition we check the largest gradient values of the
parameters to see if they are small enough for the algorithm to have converged.

input : Δ: A ℝN×N matrix of dissimilarities derived from the training set
output: W: ℝH×M matrix storing the weight scalars
output: s: ℝH×1 vector storing the positive spread scalars
output: C: ℝH×N matrix storing the center vectors ℝN×1

// Initialize parameters;1

W ← initializeWeights();2

s ← initializeSpreads();3

C ← initializeCenters();4

// Update distance matrices;5

Φ ← calculateInterpolationMatrix(W, s,C);6

Y ← ΦT ×W;7

// Inter-point distances in target vector;8

D ← calculateDistance(Y);9

// Calculate Residuals matrix;10

Γ = D−Δ;11

while Stopping criterion is not met do12

// Calculate optimization direction and step length for parameters;13

foreach Parameter � do14

∇�E ← getGradient(�,Γ,D);15

p ← getDirection(�,∇�E);16

� ← lineSearch(�,p,Γ,D);17

end18

// Adapt parameters;19

foreach Parameter � do20

� ← � + �p;21

end22

// Update distance matrices;23

Φ ← calculateInterpolationMatrix(W, s,C);24

Y ← ΦT ×W;25

D ← calculateDistance(Y);26

// Calculate Residuals matrix;27

Γ = D−Δ;28

end29

return W, s,C30

Algorithm 1: Training Algorithm for RBF-SNLM. Trains a model to be able to approximate a Sammon
mapping.

There are auxiliary variables in the training algorithm: the interpolation matrix Φ, the target matrix Y and
the distance matrix D. Recall from Eq. 2.4 that Φ is the matrix containing all values of the RBF functions
evaluated for each training pattern. The Y ∈ ℝN×M matrix contains all patterns in the target space.

D ∈ ℝN×N is a matrix containing all inter-point distances of the patterns stored in the rows of Y. These
matrices are updated each epoch and passed to the getGradient function in the optimization section of Alg. 1.



3.3 Optimizing the Parameters

The parameters optimized in RBF-SNLM using the Gaussian RBF in Eq. 3.1 are the weights W, spreads s, and
centers C. The spreads and centers are parameters of the RBFs in the hidden layer. The weights are used in the
activation functions of the output layer. Recall from Eq. 3.3 the center vector stores the centers for each hidden
unit. When only the dissimilarities are available from the training set, adapting the centers is not possible, and
the centers must be fixed to training patterns. In this case, the center parameter can be thought as a vector
c ∈ ℝH×1 containing the indices of the center patterns. The following subsections describe two methods for
optimizing the model’s parameters.

3.3.1 Conjugate gradient descent method

Batch learning methods-based online searches involve two steps. First, the search direction vector is calculated,
typically by utilizing the gradient of the stress function with respect to a parameter �. Next, an appropriate step
length along the determined search direction is identified so that the stress function is (most of the time, approx-
imately) minimized. After the search directions and step lengths have been determined for every parameter, the
parameters are adapted.

The gradient descent method determines the search direction to be the negative gradient. If we define pk to be
the search direction for epoch k then the gradient descent method uses:

pk = −∇�Ek (3.6)

Then the parameter is adapted in the direction pk+1 by a near-optimal step length �.

�k = �k−1 + �pk (3.7)

The determination of pk only depends on the current parameter’s value and the derivative of the objective
function at the current configuration, which does not always provide accurate information about the location
of the local minimum. In particular, gradient descent does not factor in any curvature information, when
determining a promising search direction.

As a more efficient alternative to gradient descent, we apply the conjugate gradient descent (CGD) method15.
CGD computes a series of search direction vectors p1, ⋅ ⋅ ⋅ ,pM that are conjugate to each other. If, in the vicinity
of the current solution, the stress function can be well approximated by a convex quadric function, then the last
adaptation should place the parameter � in a configuration such that the stress function E is a minimum with
respect to �. The accuracy of CGD depends on how near-convex quadric the stress function is and how exact the
line search is. In an effort to make the method more robust to deviations from the convex quadric approximation,
the search direction vector is reset to the negative gradient vector every M epochs. The formulas for conjugate
gradient follow:

pk =

{
−∇�Ek : k mod M = 0
−∇�Ek + �k ∗ pk−1 : otherwise

�k =
∇�ETk ∇�Ek
∇�ETk−1∇�Ek−1

(3.8)

The � value is a constant chosen such that it makes the direction vector pk conjugate to the previous direction
vector pk−1.



3.3.2 Quasi-Newton methods

In addition to the conjugate gradient descent approach for finding the direction vector, we have also used
an algorithm belonging to the family of quasi-Newton (QN) methods. QN methods are iterative optimization
methods that attempt to behave like Newton’s Method near the minimum but do not have the disadvantage
of a O(N3) (where N is the number of parameters being optimized) complexity, neither in time nor in space.
Instead of calculating the Hessian like Newton’s method, a QN optimization algorithm uses the changes in the
gradient to estimate the local curvature and produce an approximate Hessian at that configuration. If a near-
optimal step length in the search direction is found, such as one satisfying both Wolfe conditions, then training
should approach super-linear convergence and as a result, it could be much faster than simple conjugate gradient
descent15.

The particular QN variant we implemented for RBF-SNLM was the BFGS QN method, named after its four
creators Broyden16, Fletcher17, Goldfarb18, and Shanno19. At each iteration k, we write the quadric minimizer
of Eq. 3.9 where Bk ∈ ℝN×N is a symmetric matrix updated at each iteration of BFGS. The direction vector is
then calculated by Eq. 3.10. The fundamental difference between BFGS and Newton’s method is that instead of
calculating the exact Hessian matrix every iteration, BFGS calculates Bk, which is an iterative approximation
to the Hessian matrix.

mk(pk) = Ek +∇ETk pk +
1

2
pTkBkpk (3.9)

pk = −B−1
k ∇Ek (3.10)

In order to update Bk to Bk+1, we impose the conditions that the gradient of the error function E at the ktℎ and
(k + 1)tℎ iteration must match the gradient of the minimizer function m at the (k + 1)tℎ iteration. The second
condition is automatically satisfied for �k = 0 and the first one results in Eq. 3.11. If we define Δ�k=̂�k+1 − �k
and Δgk=̂∇Ek+1 − ∇Ek, then we obtain the secant equation (Eq. 3.12) and we may maintain the curvature
condition (Eq. 3.13) since Bk is a positive symmetric matrix.

∇mk+1(−�kpk) = ∇Ek+1 − �kBk+1pk = ∇Ek (3.11)

Bk+1Δ�k = Δgk (3.12)

Δ�Tk Δgk > 0 (3.13)

Since there are many such B, we require that we find minB ∥B−Bk∥ such that the secant equation is satisfied
and Bk remains a symmetric matrix. We then have an inverse matrix Hk ≡ B−1

k and an iteration of this matrix
is given by Eq. 3.14

Hk+1 = (I− �kΔ�kΔgT
k )Hk(I− �kΔ�kΔgT

k ) + �kΔ�kΔ�T
k (3.14)

for �k ≡ 1
ΔgT

k Δ�k
.

Fig. 2 illustrates the time, space and convergence rate trade-off among the two methods we used and the regular
gradient descent method. The plot illustrates that QN methods are able to speed up convergence at an increased
spatial (storage) and computational cost. Whenever the fitted RBF-SNLM model has too many parameters,
employing QN methods might not be feasible; under these circumstances CGD methods are always preferred
over plain GD.
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Figure 2. Time, space complexity and convergence rate trade-off for conjugate gradient descent, gradient descent, quasi-
Newton method, and Newton’s method. Fast convergence is achieved at the cost of higher computational and spatial
complexity of the algorithms involved.

3.3.3 Line search

In training the model to construct approximate isometries, RBF-SNLM uses a line search to find a near-optimal
step length in the direction of pk. In essence, the line search is a one-dimensional optimization problem pa-
rameterized by the step length along the current search direction vector, so that the stress function is being
minimized. Once the search direction is calculated by an optimization method, the step length � needs to be
determined. Too small a step length and the optimization algorithm would take too much time as progress would
be very slow; too large a step length would overshoot the minimum.

It would be ideal to be able to find the optimal step length, �o, such that �k+1 = �k + �opk would be as close
as possible to the minimum within the limitations of precision. However, in practice, the so called “inexact” line
searches (ones that find near-optimal step lengths) are almost always preferred over their “exact” counterparts.
The reason behind this is that the precision in determining the minimizer by performing exact line searches is
usually outweighed by the accruing, costly computational effort involved: overall, inexact line searches may ac-
complish the same progress towards a local minimum as exact methods, but with significantly less computational
burden.

The line search RBF-SNLM uses returns a step length that satisfies the strong Wolfe conditions. A step length
� that satisfies the Wolfe conditions meets the criterion for near-optimality. In this context, the value of the
stress function evaluated at the new configuration (the configuration after the adaptation of � with step length
�) has sufficiently decreased.

The Wolfe conditions test the stress function E at the trial step length � with some constants 0 < c1 < c2 < 1
for both sufficient decrease and for appropriate curvature. Let

"(�)=̂E(�k + �pTk ) (3.15)

be the stress function value at point �k, when a step of size � is taken along direction pk. The first Wolfe
condition deals with the amount of decrease in E and states

"(�) ≤ "(0) + c1�"
′(0) (3.16)



Here c1 is a user-defined parameter. Typically this value is small in its range, specifically c1 < 0.1. This condition
stipulates that the function E must exhibit sufficient decrease after the next step. Specifically, the function at
�k+1 must be below the line formed at the intercept "(0) with the slope equal to the slope at "(0). When E is
reduced sufficiently, progress will be made toward the minimum.

Satisfy 1
st
 Wolfe Condition

Do Not Satisfy 1
st
 Wolfe Condition

)0(')0( 1  kc

)(

Optimal 

k

Illustration of First Wolfe Condition

Figure 3. 1st Wolfe Condition: Step lengths lie under the sufficient decrease line to pass the first condition.

This first condition does not yield a good step length in all cases; it will do poorly in cases where the function is
very steep around the minimum so that a large change in E at the next step may yield no significant progress
toward the minimum.

The second Wolfe condition deals with the curvature in E and states

∣"′(�)∣ ≤ c2"′(0) (3.17)

c2 is a user-defined parameter. Typically, it is desirable to set its value large in its range, specifically c2 > 0.9.
The second condition stipulates that the chosen step length � must yield a next step that has sufficient reduction
in the slope of E. When the slope is reduced sufficiently, a local minimum of E in the direction pk is reached.

Combining these two conditions will yield a good step length in most cases, giving both sufficient decrease in
the objective function E and sufficient decrease in its slope as well.

The algorithm that RBF-SNLM uses (shown in Alg. 2) to find a step length that satisfies both strong Wolfe
conditions is based on an algorithm from Nocedal15. The algorithm is somewhat complex and requires explana-
tion. It starts with a parameter �k on the function E that is undergoing optimization. It must choose a step
length that satisfies both Wolfe conditions. Then the next step, when taken, will yield a value that has sufficient
decrease in the cost function E and is sufficiently closer to the minimum. The Wolfe-based line search chooses a
trial step length in the interval from �prev and �max. Based on this trial step length and the previous trial step
length, it goes through three cases that will yield a sufficient final step length.

The first case checks to see if the current trial step length �cur can be an upper bound for the final step length.
The line search does this by checking whether �cur fails to satisfy the first Wolfe condition for sufficient decrease
or whether this step yields a value from E that is greater than the previously found trial step length �prev. In
the first case a minimum must exist between � = 0 and � = �cur. In the second case, a minimum must exist
between � = �prev and � = �cur. The zoom function presented in Alg. 3 and described later in subsection 3.3.4,
attempts to find a step length between these two bounds so that when the step is taken, will yield a point �k+1

that is sufficiently close to the minimum.
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Figure 4. 2nd Wolfe Condition: "′(�) must be sufficiently less at � = trial step than at � = 0.

function LineSearch1

input : �: current value of the parameter being adapted
output: �: step length that satisfies the strong Wolfe conditions
�prev ← 0;2

�cur ← random number between 0 and �max;3

onceThroughFlag = false;4

while �cur ≤ �max do5

if "(�cur) > "(0) + c1�cur"
′(0) or (onceTℎrougℎF lag == true and "(�cur) ≥ "(�prev)) then6

�← zoom(�prev, �cur);7

return;8

end9

if ∣"′(�cur)∣ ≤ −c2"′(0) then10

�← �cur;11

return;12

end13

if "′(�cur) ≥ 0 then14

�← zoom(�prev, �cur);15

return;16

end17

�prev ← �cur;18

�cur ← select a step length from the interval (�cur, �max);19

onceThroughFlag ← true;20

end21

Algorithm 2: Wolfe-Based Line Search finds a step length that satisfies both strong Wolfe conditions
for sufficient decrease in the stress function and sufficient decrease in the directional derivative.



If the first case fails and the trial step length �cur satisfies the first Wolfe condition for sufficient decrease, the
step length is checked against the second Wolfe condition to see if "(�cur) is sufficiently small (flat). If �cur
satisfies both of these conditions, the line search has found an appropriate step length and returns.

If �cur yields a sufficient decrease but fails to yield a value that is sufficiently closer to the minimum, it may have
overstepped the minimum. If this is true, the derivative at �cur will be positive. However, since �cur sufficiently
decreases E, �cur can be used as a tighter lower bound. The interval between �cur and the previous trial step
length �prev contains an ideal step length and zoom is used to find it.

function zoom1

input : Values �lo and �ℎi
output: � between �lo and �ℎi that aims to minimize "(�)

// Set threshold value;2

while �lo ∕= �ℎi do3

�j ← Cubicinterpolate(�lo, �ℎi) ;4

Evaluate("(�j)) ;5

// Checking to see whether Wolfe Condition 1 is violated OR6

// whether a new upper bound for " can be determined
if ("(�j) > "(0) + c1�j"

′(0)) or ("(�j) ≥ "(�lo)) then7

�ℎi ← �j ;8

end9

else10

Evaluate("′(�j)) ;11

// If both Wolfe Conditions are satisfied, then �j is near-optimal;12

if ∣"′(�j)∣ ≤ −c2"′(0) then13

�← �j ;14

end15

if "′(�j)(�ℎi − �lo) ≥ 0 then16

�ℎi ← �lo;17

end18

�lo ← �j ;19

end20

end21

Algorithm 3: Zoom decreases the boundary region found by the Wolfe line search around the optimal
step length. It attempts to find a near-optimal step length with the cubic interpolation from Alg. 4.

input : �lo: Step length that is the lower boundary for "(�)
�ℎi: Step length that is the upper boundary for "(�)

output: �: Step length that attempts to minimize "(�)
if �ℎi < �lo then1

swap �lo and �ℎi;2

end3

d1 ← "′(�lo) + "′(�ℎi) + 3("(�lo)− "(�ℎi))/(�lo − �ℎi);4

d2 ←
√
d21 − "′(�lo)"′(�ℎi);5

�← �ℎi − (�ℎi − �lo)("′(�ℎi) + d2 − d1)/("′(�ℎi)− "′(�lo) + 2d2);6

Algorithm 4: Cubic interpolation to find the minimum of a cubic-like function given its boundaries
and first-order information about the function at given points



3.3.4 Explanation of the zoom procedure

Here, we explain the zoom subroutine pseudocode in Alg. 3. The strategy is that zoom repeatedly performs
the cubic interpolation algorithm of Alg. 4 on the function between two points to find a minimizer that satisfies
the two Wolfe conditions. We begin first with the outermost If-Block. In Fig. 5 below, we are given "(�),
where the two reference points, �lo and �ℎi are marked in black. Interpolation, of any kind, could theoreti-
cally yield the three step lengths marked in green and red. Only the green step length, �j1, falls within the
range stipulated by the first Wolfe condition. Outside of this range, step lengths will fail the first Wolfe con-
dition because they do not yield sufficient decrease in the stress function. We encounter the following three cases:

1. The new � found satisfies the sufficient decrease Wolfe condition AND "(�) < "(�lo) , then nothing is
done.

2. The new � found violates the sufficient decrease Wolfe condition. In this case, � is assigned to be the new
�ℎi since this point sets a new upper boundary on �ℎi.

3. The new �, regardless of whether it satisfies the sufficient decrease Wolfe condition or not, has a function
value "(�) ≥ "(�lo). � is again assigned to be the new �ℎi since this point also sets a new upper boundary
on �ℎi . See point �j3.

Zoom: Outer If-Block
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Figure 5. Zoom - Finding a suitable � to satisfy the first Wolfe Condition.

Next we proceed to examine the Else-Block. Here, one of two cases could happen. Note that the setup in Fig. 6
is essentially the same as in the previous figure except that the function "(�) itself is different and "′(0) is drawn
to illustrate the concept. Note that at this stage, the sufficient decrease Wolfe condition has been satisfied. Here,
one of two cases could happen:

1. The strong second Wolfe curvature condition is satisfied. Then the search for the optimal � terminates
and � is recognized as the optimal step length.

2. The strong second Wolfe curvature is not satisfied due to too sharp of a gradient. Then if the slope of
"′(�j) is nonnegative and �ℎi > �lo or if the slope of "′(�j) is non-positive and �lo > �ℎi, then �ℎi and �lo
are swapped since this is an indication that we are searching in the wrong direction (i.e. we have already
passed the minimum going from smaller to larger values in the first case or larger to smaller values in the
second case). So the search continues and a new �j is interpolated. Note that the key detail to realize here
is that �lo is not necessarily less than �ℎi, but that the stress function has a lower value at �lo than at �ℎi.



Zoom: Outer Else-Block
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Figure 6. Zoom - After the sufficient decrease Wolfe condition is satisfied, then the outer Else-Block will check for the
curvature Wolfe condition.

3.3.5 Gradient Equations

All of our optimization methods require the calculation of the stress function with respect to the optimization
parameters. One can generalize the gradient of any parameter to Eq. 3.18.

∂E

∂�
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1
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∑
i<j

ui,j
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)
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(3.18)

In our particular case, we are optimizing W, s and C, whose gradient equations are given below. The gradient
for the weights:
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The term for the spreads:
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The term for the centers:
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3.4 Advantages of RBF-SNLM over Classical SNLM

In contrast to Classical-SNLM, the RBF-SNLM technique allows for the interpolation or extrapolation of data
points not in the original training pattern dataset because once W, s, and C are known, we can easily find the
location of the points in the target database. The interpolation or extrapolation can be improved by adjusting
the number of hidden node, as described in section 4, to make the model generalize better.

Furthermore, adapting all these aforementioned parameters allows for accurate tuning of the input’s images. As
mentioned earlier, another advantage of RBF-SNLM is that we need only know the dissimilarity between two
data points or the data point and center and not the actual patterns themselves. That is, with the centers fixed
to the training points in the training dataset, nowhere does the training algorithm require knowledge of what
the actual points are themselves. Then, we may work purely with dissimilarities and explore non-metric datasets
whose dissimilarities may hold much more significance than the actual locations of the points.



3.5 Multiple Minima

In SNLM, the solutions to the reduction problem are not unique because they are rotation- and translation-
invariant. In RBF-SNLM, this property is still true. It is straightforward to visually inspect that given any two
target configurations of points C1 and C2, where C2 is a translation or rotation of C1, the value of the objective
function evaluated at C1 will be identical to that of C2. This is because the objective function depends on
the differences of the distances between points in the target space and the source space, and not on the points
themselves.

Of course, it may also be that the solution produced by the training algorithm is only locally-optimal. In
numerical optimization, the global solution is usually too difficult to determine. Since many parameters are being
optimized in RBF-SNLM, it may be that there are multiple local minima corresponding to output configurations
that are not rotations or translations of each other. In this case, the objective function evaluated for these
configurations would most likely be different. This particular issue could be potentially addressed by restarting
the training using different initial parameter values so that different locally-optimal configurations are produced.

3.6 Adjacency Matrices

It is sometimes advantageous to ignore certain pair-wise distances between training patterns if these distances
are deemed irrelevant or not as important to a particular visualization task. If desired by the user of RBF-SNLM,
certain distances in the dataset can be totally ignored or weighted so that their errors are less contributing to
the stress function. RBF-SNLM can handle such cases through use of an adjacency matrix, U, which weights
appropriately the residuals in the stress function. Ideally, given some previous knowledge about the dataset, we
would like to manipulate the entries of this matrix to provide meaningful visualization results in the space of
reduced dimensions. Furthermore, sparse U matrices may significantly reduce the computational complexity of
RBF-SNLM because fewer terms in Eq. 3.18 are zero. Unfortunately, the determination of U is very dependent
on the dataset being examined and the user’s goals. Moreover, the user must know some general structure of the
input data in order to take advantage of the adjacency matrix. This subsection aims to present a few general
adjacency matrices that can be used on a wide variety of datasets.

The standard adjacency matrix used is the all-ones matrix. For a dataset consisting of N patterns, this matrix
is simply of size N ×N with each entry equal to 1 so that all dissimilarities between the patterns are taken into
account with equal weight. This is the default approach to use when no previous information is known about
the dataset. Note, however, that using an all-ones adjacency matrix forces all stress function terms to be taken
into account, which could be computationally very expensive.

For visualization purposes, we explore the use of several graph matrices explained as follows. An alternate
consideration to the all-ones adjacency matrix is the � matrix, which preserves dissimilarities between points i
and j ⇐⇒ dist(i, j) < � for � being some small, positive constant. In other words, the adjacency matrix entry
associated with i and j is nonzero if pattern j lies in the �-neighborhood (with respect to dist and dist being some
kind of dissimilarity metric) of pattern i. One particular usage of this matrix that has been demonstrated in the
literature is its ability to unfold the classical Swiss roll dataset20. The adjacency matrix is depicted visually in
the Fig. 7. Typical values for epsilon are 0.3 and 0.8 for normalized data15. Subsection 3.8 deals further with
normalization of datasets.

A similar matrix to the � matrix is the � matrix. The conditions to be satisfied for a graph connection are
slightly more complex. Specifically, given two distances di,min = minj �i,j and dmin,j = mini �i,j for dk,min
denoting the closest point to point k in the entire set, a graph connection is only formed if special similarity and
neighborhood conditions are satisfied. In specific, the similarity connection requires that di ≤ �dj and dj ≤ �di
for some positive tolerance � so that these nearest-neighbor distances are of the same order of magnitude. That
is, dist(i, j) ≤ �di or, likewise, dist(i, j) ≤ �dj15.

Another variation, the K matrix, does not utilize the absolute pairwise dissimilarities between data patterns but
instead, relies on the rank order dissimilarities between each pair of patterns to compute its graph connections.
That is, each pattern simply forms a connection with its K- nearest neighbors.15 This is rather simple to
construct since the dissimilarity between each pair of patterns is known from the onset of the minimization.
However, sorting of the dissimilarities must still be performed to realize their relative sizes.



Figure 7. Epsilon matrix applied to the Swiss roll dataset. Lines indicate adjacency connections.

A more complicated variation of the K - rule is the data rule, used to form the data adjacency matrix. Generally,
a better extraction of the overall shape of the data set being visualized can be achieved with a rule such as
this, which incorporates the ellipse and circle conditions. However, in these cases, the center prototypes must
be known. Then, for points xi and xj and centers cr and cs, the ellipse condition imposes the restriction
dist(i, cr) + dist(j, cs) < C1dist(cr, cs) so the points must lie inside an ellipse with foci defined by the centers
cr and cs. Additionally, the circle condition requires that dist(i, cr) < C2dist(i, cs) and similarly, dist(i, cs) <
C2dist(i, cr). The constants C1 ≡

√
s2 + 1 and C2 ≡ 1+s

1−s where s is a parameter taking values in [0.2, 0.6]15.

3.7 Initialization of Parameters

Initialization of the parameters plays a substantial role in the final mapping of the dataset. Since we are
interested primarily in the visualization, we normalize the patterns in the original database, if available, so that
each feature is zero-centered and has a standard deviation of one. Furthermore, since the RBF function depends
on the dissimilarities, we divide each entry of the original database by the maximum entry in the calculated
dissimilarity matrix. The entries of the W matrix are then randomly generated numbers in the interval (0, 1).
Likewise, the entries of the s parameter, if they are all distinct (each RBF features its own spread parameter), are
randomly generated numbers in the interval (0,1). Note that no value in s can be 0 since it is in the denominator
of the Gaussian RBF. If a common spread parameter s is used for all RBFs, only one random number in the
interval (0,1) is chosen. The centers C may be initialized randomly, set to the training patterns, or initialized
with the k-medoids clustering algorithm21.

K-medoids is a clustering algorithm where the set of cluster centers is a subset of the input patterns21. It takes
as input a set of patterns and a number of clusters k ≤ N , where N is the number of patterns in the training set.
It returns a clustering with k clusters, each consisting of at least one point. Each cluster has one and only one
representative point, called the medoid of that cluster. Medoids m1..mk must be distinct patterns within the
input dataset. In the case of RBF-SNLM, where we must be able to perform reduction on datasets consisting
only of distances, a modification to the k-medoids algorithm must be made. This modification is that instead of
passing the patterns themselves, we pass to k-medoids the distance matrix Δ containing all interpoint distances
the training set. The algorithm returns the indices of the medoids.

3.8 Normalization

One particular use of MDS is the generation of an isometric mapping of patterns in the high dimensionality
source space to a low dimensionality target space. However, for many of our datasets, in order to easily generate
visually meaningful results, we perform some type of normalization. For instance, if we are interested only in the
relative dissimilarities of the training patterns, a multiplication of the entire dataset by a scalar will not detract
from the mapping.

Furthermore, in terms of working with non-metric data, we often choose to normalize the training patterns by
making each feature zero-centered and having a standard deviation of one via an affine linear transformation.
Note that in this case, each dimension is scaled individually and relative dissimilarities between dimensions are
not preserved. There are several advantages to this. First, this allows for a uniform way to initialize the W,



s, and C parameters independently of the dataset being used. Similarly, this normalization also allows for the
initial step lengths chosen for the Wolfe-based line search to be standardized. Furthermore, the derivative of the
Gaussian kernel function becomes relatively saturated when it is too distant from the zero center. As a result,
the derivatives evaluated at those points are small and the gradients calculated for the parameters are likewise
small. As a result, the parameters would converge rather slowly. Normalizing the dataset aims at avoiding this
problem. We use such a normalization technique when we find it fitting to extend the use of MDS from being
simply an application on a metric network to one that is used on a topological network as well, as in the case of
the Teapots dataset22,23 (see Section 4.5).

3.9 Training modes

The training algorithm for RBF-SNLM is abstract enough to allow for different implementations that have
varying capabilities depending on the parameters being optimized and the type of inputs. In this subsection, we
describe the different modes of operation for the training algorithm.

The standard mode of training is to use a training set consisting of the patterns and adapt all of the parameters in
the hidden layer and the weights of the output layer as well. For a Gaussian RBF, one would adapt the spreads,
centers, and weights. The weights are initialized to arbitrary values within the range of the input dataset. The
spreads are initialized to arbitrary positive real numbers whose range also depends on the input dataset, and the
centers are initialized in a manner that chooses representative locations, again with respect to the given training
set.

These locations can be chosen in a number of ways. Randomly choosing and clustering are useful methods.
K-means or k-medoids can be used to find k = H representative patterns. If H = N , then k-medoids reduces
to simply choosing all training patterns to be the centers. This particular mode can be used to find a better
approximate isometry for some training data, but may not be as accurate in interpolation due to overfitting.
Also, the execution time of this type of RBF-SNLM will take the longest amount of time out of all modes.

A variation on the previous mode is when all parameters except the centers are adapted. The parameters are
initialized like above. However, no optimization algorithm or line search is performed on the centers parameter.
While this method may produce worse approximate isometries, the interpolation would be better due to the
inability to overfit as much as when using the previous mode.

One of our main objectives is to be able to train a model with only the pair-wise dissimilarities derived from the
training set while retaining the ability to interpolate new samples. This mode would adapt weights and spreads.
Instead of using a collection of center vectors, this mode only requires the specification of a vector of training
pattern indices that will serve as cluster centers/representatives. The indices are chosen by the same means as
the above method. The centers are kept constant throughout the training process. It is future work to learn how
to adapt them as well. This mode can reduce dissimilarity datasets and can map new dissimilarities as well.

4 RESULTS AND DISCUSSION

The basic use of RBF-SNLM is to map high dimensional data to lower dimensional 2D or 3D for visualization
purposes. This can be done either by learning the mapping of the samples or an interpolation after the mapping
is learned. In this particular section, we showcase the obtained results using RBF-SNLM on five datasets: Square,
Congressional Voting, the Federalist Papers, the Swiss roll, and Teapots.

4.1 Square Dataset

As a check for the implementation of RBF-SNLM and as an exploration of the basic properties of the mapping,
we begin with some preliminary results on a highly predictable example.

One of the key deviations between RBF-SNLM and Classical - SNLM is the introduction of adjustable centers
for the RBFs. As a test case for the illustration of this particular concept, we introduce the Square dataset, as
depicted in Fig. 8. This particular dataset is a simple array of 36 points in 2D sampled equidistantly over [2,11]
in both the X and Y dimensions with each of square’s four sides consisting of 10 data patterns (each of the four
corners is shared by two sides). We use RBF-SNLM to remap this particular dataset from 2D to 2D. Since this
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Figure 8. The original square dataset of 36 evenly spaced training patterns.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5
Interpolation with Fixed Centers and H = 36

Figure 9. RBF-SNLM of the square dataset with fixed centers and H = N = 36. Red points depict mapping of the original
dataset. Blue lines depict the corresponding interpolation of points along the square. Specifics: W and s parameters
were randomly initialized. Each RBF featured its own spread parameter. Fixed centers were initialized via k-medoids.
150 iterations were run via quasi-Newton Method.



10.5 11 11.5 12 12.5 13 13.5 14 14.5
10.5

11

11.5

12

12.5

13

13.5

14
Interpolation with Adjustable Centers and H = 36

Figure 10. RBF-SNLM of the square dataset with adjustable centers andH = N = 36. Specifics: W and s parameters were
randomly initialized. Each RBF featured its own spread parameter. Adjustable centers were initialized via k-medoids.
150 iterations were run via quasi-Newton Method.
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Figure 11. RBF-SNLM of the square dataset with fixed centers and H = N
2

= 18. Specifics: W and s parameters were
randomly initialized. Each RBF had its own spread parameter. Hidden dimension = 18. Fixed centers were initialized
via k-medoids. 300 iterations were run via quasi-Newton Method.
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Figure 12. RBF-SNLM of the square dataset with adjustable centers and H = N
2

= 18. Specifics: W and s parameters
were randomly initialized. Each RBF had its own spread parameter. Adjustable centers were initialized via k-medoids.
150 iterations were run via quasi-Newton Method.

is a direct same-dimension mapping with no dimensionality reduction, it should be rather simple and distance
preservation should be exact.

As a parallel between RBF-SNLM and Classical-SNLM, we set the number of hidden nodes in the RBF layer
to be equal to the number of training patterns. In this particular case, the centers in the RBF layer can simply
equal the training patterns in the original feature space. Then, with fixed centers, if the spreads, s, approach 0,
each RBF function responds with a 1 if the input pattern matches the center of the RBF (one of the training
patterns). Otherwise it responds with a 0. In other words, the RBF becomes the hit-or-miss activation function
as defined in Eq. 3.2. Then, it follows that W is analogous to the patterns in the target space obtained via
Classical-SNLM. Note, however, that interpolation of points not in the original database is slightly better when
the centers are adjustable so that over-training is reduced whenever the dimensionality of the hidden layer is
less than the cardinality ∣N ∣ of the training set. Fig. 9 demonstrates the results of a RBF-SNLM mapping using
fixed centers for the number of hidden nodes equal to the number of training patterns. The red dots represent
the mapping of the points from the training set. The blue lines in between depict the interpolated points, which
are line-connected for visualization purposes. Fig. 10 illustrates the result with adjustable centers. Note that
in both cases, the points in the original feature space are mapped rather well, but the quality of generalization
and the interpolation of novel points is not as good. Furthermore, there is no marked difference in the mapping
and interpolation of points between the case where the centers are adjustable and the case where they are fixed.
This is expected since using H = N nodes in the hidden layer does not entail a loss in a degree of freedom for
distance preservation as this is a 2D-to-2D mapping and inter-point distances can be perfectly preserved.

There is, however, a trade-off between the accuracy of the mapping and the quality of the interpolation. Having
the number of hidden nodes in the RBF layer equal to the number of total training pattern provides a relatively
accurate mapping but detracts from the results of interpolation, perhaps due to over-training. On the other
hand, having a reduced number of hidden nodes in the RBF layer detracts from the mapping of the training set
but improves on the interpolation quality of points not included as part of the original training patterns. Again,
we illustrate this with a simple example of the square dataset. Here, the adjustable centers play a key role when
the number of hidden nodes is reduced to fewer than the number of training patterns since now, it is no longer
possible to have a one-to-one correspondence between the training patterns and the centers of the RBF functions.
Fig. 11 demonstrates the results of a RBF-SNLM mapping using fixed centers for the number of hidden nodes
equal to one half the number of training patterns. Again, the red dots indicate the mapping of the points in the
training set and the blue lines represent the connected interpolated points. Note that with fixed centers, there is
some error with the mapping as expected. However, it is interesting to note that the interpolation of the points
is relatively robust despite the relatively poor quality of the mapping for the training set. That is, they are still



mapped to the square curve. Fig. 12 illustrates the results with adjustable centers. Note that both isometric
preservation and interpolation are greatly improved. We conclude, then, that incorporation of adjustable spread
parameters and reducing the number of hidden nodes is constructive for interpolation. However, having fixed
spreads with the same number of hidden nodes as training patterns results in the most accurate mapping of
points in the original dataset. Fixed spreads, nonetheless, detract from mapping and interpolation when the
number of hidden nodes is reduced.

4.2 Congressional Voting
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Congressional Voting Classification: Democrat(Blue) or Republican(Red)

Figure 13. RBF-SNLM performed to differentiate Republicans from Democrats and interpolate unseen voting behaviors.
Interpolated points are hollow. Specifics: 10 training patterns for each of Democrats and Republicans (20 total) were used.
H = N = 20. 50 iterations were run via quasi-Newton Method. Adjustable weights and spreads were used. Dissimilarity
between training patterns was calculated as a Tanimoto distance and normalized so that the maximum element was 1:
only dissimilarities were used. Weights and spreads were randomly initialized in (0, 1). An all-ones adjacency matrix was
used. Centers were initialized via k-medoids. 5 additional patterns for each party (10 total) were interpolated.

Next, we apply RBF-SNLM in an attempt to visually discriminate between Democrats and Republicans based
on their voting records. This particular dataset originates from the 1984 United States Congressional Voting
Records Database and represents the voting records of 435 House of Representative Members on 16 key issues
as identified by a Certified Quality Auditor (CQA). The various issues range from immigration to education to
handicapped infants. Votes were classified as one of three types, yes (y) (which include such key words as “voted
for,” “announced for” and “paired for”), no (n)(which include such key words as “voted against,” “announced
against” and “paired against”), and unknown (? )(which include “voted present,” “voted present to avoid conflict
of interest” and “did not vote or otherwise make a position known”). Note that the unknown classification does
not necessarily mean missing data24,25. A sample training pattern is given as follows:

republican,n,y,n,y,y,y,n,n,n,y,?,y,y,y,n,y .

The dissimilarity between two training patterns is determined by the Tanimoto distance. We do not use the Eu-
clidean distance here since it cannot be computed for the non-metric data. The Tanimoto metric is a simple and
often successful concept used to calculate dissimilarites between two patterns that are judged to be either “same”
or “different.” It does not take into account graded similarities. Formally, DTanimoto(P1, P2) = n1+n2−2n12

n1+n2−n12
,

where ni refers to the number of elements in set i and nij refers to the number of elements common to both sets
i and j26.

Fig. 13 depicts the results of the mapping of the Democrat and Republican voting patterns in blue and red
respectively. There is a clear separation between the two parties and the interpolation of the data is overall
accurate despite some error in isometric preservation. Note, however, that there is specifically one Democrat
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Figure 14. RBF-SNLM performed to differentiate Republicans from Democrats and interpolate unseen voting behaviors
with a reduced number of hidden nodes. Interpolated points are hollow. Specifics: 10 training patterns for each of
Democrats and Republicans (20 total) were used. H = N

2
= 10. 50 iterations were run via quasi-Newton Method.

Adjustable weights and spreads were used. Dissimilarity between training patterns was calculated as a Tanimoto distance
and normalized so that the maximum element was 1: only dissimilarities were used. Weights and spreads were randomly
initialized in (0, 1). An all-ones adjacency matrix was used. Centers were initialized via k-medoids. 5 additional patterns
for each party (10 total) were interpolated.

sample that is mapped close to the opposing party (Senator # 7). However, further examination of the dataset
indicates that the two closest voting patterns to that particular senator in terms of Tanimoto distance are both
that of Republicans’. Such instances reflect the real world phenomenon that voting behavior does not always
conform with party affiliation.

Fig. 14 depicts the same results with a reduced number of hidden nodes. Again, note here that with a decreased
number of hidden nodes, there is an even wider separation between the Democrats and the Republicans, thus
resulting in an enhancement of visual discrimination between the two classes of senators. Note, however, that
the outlying Democrat senator remains for the above reason.

4.3 Federalist Papers

The next dataset we examine consists of the series of Federalist Papers, which were written in 1787 and 1788
and published in various New York State newspapers with the aim of persuading the New York voters to ratify
the United States Constitution. All essays were signed under the pen name PUBLIUS, but it is generally
acknowledged that out of the collection of papers, Alexander Hamilton wrote 56, James Madison wrote at
least 50, and John Jay wrote 5 papers27. There are 12 other disputed papers that are generally attributed to
Madison28,29. The dataset provided contains 51 Hamilton paper patterns, 14 Madison paper patterns, and 12
disputed paper patterns. Each pattern contains the index of the specific Federalist Paper, the text file from
which the data is extracted, and the frequencies (occurrences per 1000 words) of 18 key patterns of word phrases
used in the particular paper30.

We attempt to classify the papers in two ways. The first involves obtaining 14 patterns of each of the known
Hamilton and Madison papers along with the 12 disputed papers. We then apply RBF-SNLM to the three
groups of papers. We use an adjacency matrix, where preservation of all inter-cluster distances is considered
important and preservation of all intra-cluster distances is ignored. Although there are more than 14 instances
of Hamilton papers, we are limited by the number of Madison papers provided. Since the error function places
more weight on a particular sample group when there are more patterns in it due to the non-zero entries in the
adjacency matrix, we choose only the first 14 Hamilton patterns. We are, however, only limited to 12 disputed
papers and select to use all of them. For the calculation of dissimilarities from the non-metric data, we deviate
from the standard Euclidean distances to L1 norms as they are slightly computationally simpler. Since the data
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Figure 15. RBF-SNLM performed to identify the author of the disputed papers via direct mapping. Interpolated points
are hollow blue. Specifics: 14 training patterns of each of known Hamilton and Madison papers and 12 training patterns
of disputed papers (40 total) were used. H = N = 40. 150 iterations were run via quasi-Newton Method. Adjustable
weights and spreads were used and initialized randomly in (0, �max), for �max denoting the maximum dissimilarity between
any two training patterns. Dissimilarity between two training patterns was calculated as L1 distances (RBF-SNLM run
on dissimilarities). An adjacency matrix that only preserves inter-cluster distances among all three categories was used.
Centers were initialized via k-medoids.

provided reflects frequency counts of words, calculation of the L2 norms does not give an explicit advantage
over calculation of the L1 norms. Since there is no need to perform additional interpolation on the dataset, the
number of hidden nodes is kept to be equal to the number of training patterns for higher accuracy. The result
can be seen in Fig. 15. Note that there is a relatively clear separation between the Hamilton and Madison
patterns. Note also that in accord with previous theory, the disputed papers are identified to be visually closer
to the Madison patterns.

4.3.1 Classification via Interpolation

As an alternate method, we also explore the interpolation of the disputed data patterns. First, via RBF-
SNLM we use the “inter” adjacency matrix again with 14 of each of Hamilton and Madison training patterns
(28 total) and L1 norms for calculating dissimilarities to create a mapping in 2D. This adjacency matrix, as
mentioned previously, considers preservation of all inter-cluster distances and ignores preservation of all intra-
cluster distances. Since interpolation is involved, we choose the number of hidden nodes to be smaller than
the total number of training patterns. After learning the mapping, we interpolate the disputed papers. Fig.
16 indicates that although the separation between the Hamilton and Madison patterns is rather small, the
interpolated points still clearly fall on the Madison side. This mapping is consistent with previous results obtained
via analysis performed using a support vector machine29,31, where training was performed on 56 Hamilton papers
and 50 Madison papers. Again, as shown in previous research, the separation between the two categories is not
large29.

4.4 Swiss roll

The Swiss roll20 dataset, so called because of its shape, is a common test set used particularly for its distinct
manifold and mapability. As its name suggests, it is a rolled up sheet in 3D. The aim here is to use RBF-SNLM
to “unroll” the dataset so that it is mapped as a flat sheet in 2D with no overlapping points. Fig. 17 shows an
image of the original dataset. Our particular roll consists of 5 equidistant layers with 30 points per layer for a
total of 150 data points. In directly applying RBF-SNLM without interpolation of additional points, we work
with the first three layers consisting of 90 data points unless otherwise stated.
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Figure 16. RBF-SNLM performed to identify the author of the disputed papers via direct mapping. Interpolated points
are hollow blue. Specifics: 14 training patterns of each of known Hamilton and Madison papers (28 total) were used.
H = 3N

4
= (21): trade-off between accurate interpolation of previously unseen patterns and accurate mapping of the

training set patterns. 200 iterations were run via quasi-Newton Method. Adjustable weights and spreads were used
and initialized randomly in (0, �max), for �max denoting the maximum dissimilarity between any two training patterns.
Dissimilarity between two training patterns was calculated as L1 distances (RBF-SNLM run on dissimilarities). An
adjacency matrix that only preserves inter-cluster distances among all three categories was used. Centers were initialized
via k-medoids.
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Figure 17. The Swiss roll dataset consisting of 5 equidistant layers and 30 points per layer.
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Swiss Roll using Euclidean Distance and an All-Ones Adjacency Matrix

Figure 18. RBF-SNLM performed on the Swiss roll using Euclidean distance and an all-ones matrix. Blue lines indicate
adjacencies between points in the original manifold. Specifics: 80 Iterations were run via quasi-Newton Method. Weights
and spreads were initialized randomly. Centers were initialized as the training patterns. H = N = 90.

Fig. 18 depicts the results obtained from a generic mapping of the RBF-SNLM using Euclidean distances and an
all-ones matrix. That is, there is no assumption of prior knowledge about the particular dataset. Note that here,
the assumption of an all-ones matrix fails to unroll the Swiss roll and the points remain curled up as before.
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Swiss Roll with Epsilon Adjacency Matrix and Euclidean Distance (Epsilon = 0.2)

Figure 19. RBF-SNLM performed on the Swiss roll using Euclidean distance and an � matrix with � = 0.2. Blue lines
indicate adjacencies in original manifold. Specifics: 100 Iterations were run via quasi-Newton Method. Weights and
spreads were randomly initialized. Centers were initialized as the training patterns. H = N = 90.

Previous research suggest a variation on the adjacency matrix for improved results20. Since we wish to unfold the
dataset, we may place significantly less influence on preserving the distances between two points on a diameter of
the trunk of the Swiss roll. We turn to the � matrix as discussed in section 3.6 with � = 0.2 (20% of the maximum
Euclidean distances between two patterns). Fig. 19 depicts the results. Note that in this particular case, while
the Swiss roll is indeed unrolled, the resulting image does not accurately preserve the distances between the
layers. One might think that increasing the � value would yield a better mapping. Nonetheless, doing so only
results in a failure to unroll the Swiss roll.

A third variation that we attempted aims to calculate the distances between two training patterns in the original
feature space in terms of a geodesic distance, the shortest distance between two points on a manifold20 as opposed
to an Euclidean (L2) norm. Note that in this case, the geodesic distance between any two training patterns will
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Figure 20. RBF-SNLM performed on the Swiss roll using geodesic distances and an all-ones matrix. Blue lines indicate
adjacencies between two points in the original manifold. Specifics: 50 Iterations were run via quasi-Newton Method.
Weights and spreads were randomly initialized. Centers were initialized as the training patterns. H = N = 90.

always be greater than or equal to the Euclidean distance between the same two patterns. Our manifold, is of
course, the Swiss roll itself and graph distances are calculated via a shortest path algorithm such as Dijkstra’s32.
Note that the distances between training patterns in the target database are still calculated as Euclidean norms.
Fig. 20 depicts the result using an adjacency matrix of all-ones. Note that in using this approach, we are able
to unroll the dataset. Furthermore, the results can be achieved in a relatively short time (50 iterations) and
the inter-layer distances are well mapped. Note, however, because of normalization of each particular dimension
to be zero centered and have a standard deviation of one, the relative distances preserved between points are
slightly distorted so that the resulting mapping is not a perfect square grid as it should be given equidistant
adjacent points.
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Figure 21. RBF-SNLM performed on the Swiss roll using geodesic distances and an all-ones matrix. Blue lines indicate
graph connections between points. Hollow points indicate interpolated layers. Specifics: 100 Iterations were run via
quasi-Newton Method. Weights and spreads were randomly initialized. Centers were initialized as the training patterns
via k-Medoids. H = N

2
= 45.

After successfully unrolling the Swiss roll, we aim also to interpolate intermediate layers. In training our patterns
via direct RBF-SNLM mapping, we take layers 1, 3, and 5 of the Swiss roll and leave layers 2 and 4 for
interpolation. Since we are interpolating, we reduce the number of hidden nodes to one half the number of



training patterns. Our results, shown in Fig. 21 indicate that interpolation is relatively accurate and the
preservation of the inter-layer and intra-layer distances is faithful.

4.5 Teapots
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Figure 22. Three frames of the Teapots dataset.
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Figure 23. RBF-SNLM performed on the Teapots dataset using an arc length distance. Blue dots indicate mapped points.
Red dots indicate interpolated points. Specifics: 100 iterations were run via quasi-Newton Method. Weights and spreads
were randomly initialized. Centers were fixed to the training patterns. H = N = 50. An all-ones adjacency matrix was
used.

The Teapots dataset22,23 consists of 100 patterns each with 1938 features representing the grayscale values of
predetermined pixels as the teapot undergoes a 360∘ rotation. Each image of the teapot is a 560 pixels by 420
pixels image sampled at every 3.6∘ angular rotation. Fig. 22 depicts three sample frames of the Teapots dataset.

For our particular experiment, we take every other pattern (grayscale frame) to form the training set. To find the
dissimilarity between two points in the original database, we then calculate an arc length distance by applying
the following rule. For each pattern in the training set, we find the two points (frames) that are closest in
Euclidean distance and assign the dissimilarities between each of the two nearest neighbor patterns and that
pattern an arc length distance of 2. We calculate the dissimilarities between any two points as a geodesic arc
length distance. We then perform RBF-SNLM on this particular dataset. For accuracy of mapping and since we
are interpolating on the manifold of the teapot curve, we do not reduce the number of hidden nodes.

For interpolation, we use the remaining patterns from our dataset. For each interpolated pattern, we also
calculate its two nearest neighbors and assign that dissimilarity an arc length distance of 1. We then calculate
the dissimilarities between a pattern and a center as a geodesic arc length distance as before.

The result we obtain from Teapots, as depicted in Fig. 23, indicates that this mapping is a rather smooth closed
curve as expected, since the rotation of the teapot should place the resulting frames on a one-dimension, closed
curve in 1938 dimensions. We also note that the interpolated points fit very well where they are supposed to.



5 CONCLUSIONS

Our work has introduced a variation of SNLM, a celebrated, metric Multi-Dimensional Scaling (MDS) technique
to visualize data by attempting to preserve distances while non-linearly projecting the data to 2D or 3D. The new
approach, referred to as RBF-SNLM, uses a Radial Basis Function (RBF) neural network to learn the Sammon
map either by having full knowledge of the training patterns’ location in the input feature space or by knowing
only their pair-wise distances (or dissimilarities, in the general case). The key features of RBF-SNLM include an
adjustable hidden layer complexity through the number of hidden units employed in the network hidden layer
and adaptable spread and center parameters for each RBF. This flexibility allows for accurate mapping and
interpolation of data from a higher dimensional space to a lower dimensional target space. In particular, we
emerge with two versions of RBF-SNLM: the first of which performs the mapping knowing the exact locations of
patterns in the input feature space, and the second of which performs the mapping knowing only the dissimilarity
between each pair of training patterns. The second version has the advantage of visualizing non-metric data.

Moreover, we have made use of an adjacency matrix so that certain pairwise distances are given more emphasis to
be preserved than others. With prior knowledge regarding the dataset, we are able to improve the visualization
by appropriately structuring this adjacency matrix. Furthermore, zero entries in the adjacency matrix speed up
calculation of the gradient and reduce computational time per iteration.

In addition, we have explored some variations in the choice of dissimilarities in the source database in order to
suitably interpret the relationships between input patterns. Apart from the usual L2 Euclidean Norm we have
also explored the use of the L1 Norm and the Tanimoto Distance for non-metric data. We concluded that using
an appropriately defined dissimilarity may make interpretation of the available data more straightforward and
meaningful.

Additionally, we have used RBF-SNLM for mapping interpolations, where the mapping is learned using an
available training set and the obtained W, s,C parameters are used again to map previously unseen patterns
into the target space. There is a trade-off between the accuracy of interpolation and the accuracy of mapping
with respect to the training set. As seen from the results, a reduced number of hidden nodes will generally
result in better interpolation. However, because of the reduced number of centers in the hidden layer, there is
more inaccuracy in the exact preservation of dissimilarities calculated on the training data. A reduced number
of hidden nodes also aids in providing a clearer separation between two categories of patterns, as demonstrated
in the Congressional Voting dataset. Since we can achieve this separation via distance preservation, RBF-SNLM
can be used as a visual classifier as it is done for the Federalist Papers dataset. The visual classification can
be achieved in one of two ways: via directly applying RBF-SNLM and mapping the training data and also
via interpolation of additional patterns once a mapping is learned. Finally, as demonstrated with the Teapots
dataset, we expand our use of RBF-SNLM from metric to topological mappings, an aspect that we hope to
further explore in the future.

Another path to explore is mapping to the hidden layer via a different kernel function. Our current mapped
SNLM approach uses a Gaussian RBF since it is relatively common and relatively easy to specialize to Classical-
SNLM by adjusting the spread and center parameters. In specific, we could investigate the effect of using different
RBFs to the visualization results obtained via RBF-SNLM and assess the interpretability of the projected data.

Finally, for the immediate future, we would like to explore techniques of adjusting the centers when we are
only cognizant of pair-wise dissimilarities between the available data. While one route suggests combinatorial
optimization techniques to identify training patterns as RBF centers, another line of research could be developed
by investigating inner product based techniques to express RBF centers as convex combinations of training
patterns.

A DESIGN OF IMPLEMENTATION

One of the challenging aspects of the project was creating a flexible, extensible, object-oriented design of the
SNLM implementation. The design had to be generic in order to allow for easy changes to key components, such
as the line search or the optimization method. Furthermore, it needed to be able to perform Classical-SNLM
and RBF-SNLM, with either the training patterns or without exact knowledge of the training pattern locations
and knowledge only of pair-wise dissimilarities between patterns.



In the design of SNLM, we have three main classes, the Knowledge Representation, the Training Algorithm, and
Test. These are shown in Fig. 24. The Knowledge Representation contains all of the parameters of the model
necessary to allow another implementation to reconstruct the target and perform interpolation/extrapolation.
The Knowledge Representation contains the weights, the spreads, and the centers parameters. It also contains a
reference to the type of Radial Basis Function the model uses.

+Test(in updater : Updater &, in knowledge : KnowledgeRep &, in numTargetDim : int)

+map(in delta : Matrix &) : Matrix

#m_numTargetDim : int

#m_updater : Updater &

#m_knowledge : KnowledgeRep &

Test

+train(in knowledge : KnowledgeRep &, in delta : Matrix &, in targetNumDim : int) : Matrix

+QNTraining(in updater : Updater &, in objectiveFunctor : ObjectiveFunction &, in maxIterations : int, in threshold : double)

QNTraining

+Training(in updater : Updater &, in objectiveFunctor : ObjectiveFunction &, in maxIterations : int, in threshold : double)

+train(in knowledge : KnowledgeRep &, in delta : Matrix &, in targetNumDim : int) : Matrix

+stopCriterion(in knowledge : KnowledgeRep &, in gradients[] : Matrix*) : bool

#updater : Updater &

#objectiveFunctor : ObjectiveFunction &

#numPoints : unsigned int

#numTargetDim : unsigned int

#m_maxIterations : int

#m_threshold : double

Training

+KnowledgeRep(in params[] : Parameter*, in rbf : RadialBasisFunction &)

+KnowledgeRep(in krep : const KnowledgeRep &)

+getParam(in pName : ParameterName) : Parameter *

+getRBF() : RadialBasisFunction &

-m_params[gMaxNumParams] : Parameter *

-m_rbf : RadialBasisFunction &

KnowledgeRep

Figure 24. Class diagram illustrating the relationships of the main components. The Training Algorithms are highly
dependent on the Knowledge Representation for what behavior they produce. There is an inheritance relationship here
that produces QNTraining. The Test algorithm’s output is dependent on a previously trained model’s Knowledge Repre-
sentation.

A.1 Training Algorithm

The Training Algorithm takes a Knowledge Representation containing all of the initialized parameters and trains
this model so that the stress function in Eq. 3.4 is minimized.

The Train method implements the psuedocode of Alg. 1. There is a key difference though: the Train method



updates Φ, Y, and D with an Updater function object, discussed in section A.9. This, in addition to the non-
specific parameter optimization loop, allows the Training Algorithm to be generic enough to be used in multiple
situations where the parameters, RBF, or stress function may all be different from what they are in RBF-SNLM.
For instance, we can produce Classical-SNLM when the Knowledge Representation contains only the weights
and the RBF is the one in Eq. 3.2. The algorithm uses a stopping criterion method that checks if the stopping
criterion is met.

Although the base class Training is generic enough to satisfy many different configurations of parameters, line
searches, and optimization algorithms, specialized handling code is sometimes necessary in the training. If this
is necessary, then the Train method is overridden in a derived class.

The Quasi-Newton Training (QNTraining) class is derived from the base class Training. It contains specialized
code for handling failures of the line searches when using BFGS Quasi-Newton as the optimization algorithm. If
a line search fails to find a step length satisfying the Wolfe conditions, then the parameter currently undergoing
adaptation is not adapted and the BFGS Quasi-Newton optimization algorithm is reset to use the identity matrix
as the previous Hessian matrix, effectively becoming gradient descent.

A.2 Test

The Test class performs interpolation and extrapolation. It takes a set of test patterns and a Knowledge
Representation object from a previously trained model and maps these test patterns to the target space. To do
this, it constructs an interpolation matrix Φ from the test patterns and Knowledge Representation object and
uses Eq. 2.6 to find the mapped outputs. The Test class uses an Updater object to construct the interpolation
matrix so that the class is generic to any Parameters.

A.3 Knowledge Representation

The Knowledge Representation is a container class in that it stores all Parameters in a collection and exports the
getParam method as an accessor and mutator for each Parameter object. A Knowledge Representation object
need not know about what parameters it stores and thus can be generic to all parameter sets. The Knowledge
Representation also stores a reference to the RBF being used as this is crucial to the successful operation of the
Test class.

A.4 Parameters

All values for a parameter in an SNLM model are stored in a Parameter container object, shown in Fig. 25. In
addition, the Parameter class contains a reference to the stress function’s gradient with respect to the parameter
type. Parameter also store references to the Line Search and Optimization Algorithm to use with them. A
Parameter can be adaptable or non-adaptable. There should be one instance for each parameter type: the
weights, spreads, centers, and so forth.

Semantically, it may make more sense to have the Gradients referenced in the Objective Function. However, one
of the goals was to reduce the amount of code dependency, so as to allow for flexibility with which components to
use. The semantically correct way forces specialized code to be written in the Line Searches which handle which
parameter they are passing to the gradient in the Objective Function. Thus, we assign the Gradient reference to
its respective parameter.

Another design choice was the inclusion of the Line Search and Optimization Method in the Parameter container.
This is because the Line Searches and Optimization Methods cache data between private method calls, such as
the directional derivative at some step length �. These make the classes very parameter-specific. It was natural
to group them with the Parameter class. A side benefit to grouping these classes this way is that each Parameter
can have a different Line Search and Optimization Method.

A.5 Radial Basis Function

The Radial Basis Function is a functor class that evaluates an RBF given a distance and constant. All Radial
Basis Functions are derived from the same interface which takes the distance and an extra constant whose
meaning depends on the RBF type.



+Parameter(in paramData : Matrix &)

+Parameter(in paramData : Matrix &, in gradFunctor : Gradient*, in lineSearch : LineSearch*, in optimizer : Optimizer*)

+Parameter(in param : const Parameter &)

+data : Matrix

+gradient : Gradient *

+lineSearch : LineSearch *

+optimizer : Optimizer *

+isAdaptable : bool

Parameter

Figure 25. Class diagram showing that the parameter class is a container class for the parameter data and parameter
specific functors.

A.6 Objective Function

Another class is the Objective Function, used by the Line Searches to test trial step lengths’ costs. The Objective
Function can be called as a function to evaluate a current configuration of the Knowledge Representation or
a hypothetical one if a step length � is used to adapt a particular parameter. It can also find the directional
derivative of a hypothetical Knowledge Representation configuration. The Objective Function uses an abstract
base class which must be inherited to have a standard interface. The Objective Function used in RBF-SNLM is
the Sum Of Squares Error function.

A.7 Gradients

The Gradient classes, shown in Fig. 26, are functors referenced by the Parameter class which calculate the
gradient of an Objective Function with respect to that parameter. These all derive from the same interface.

There are two types of Gradient classes: Gradients with the original training patterns and Gradients using
only pair-wise dissimilarities. Both derive from an abstract base class. Each Gradient calculates intermediate
terms differently depending on its base type. If the Gradient must have access to the original patterns, such as
the gradient of the stress function with respect to the centers, then that Gradient class must be derived from
the appropriate abstract base class so as to standardize the constructors. The Gradient methods are the most
computationally intensive in the implementation. All efforts to optimize them should be taken.

A.8 Line Search and Optimization Method

The Line Search class determines the adaptation step length. From its interface are derived Constant Step
Length, Backtracking Line Search, and Wolfe (conditions based) Line Search. The Optimization Method class
determines the search direction. From its interface are derived Gradient Descent, Conjugate Gradient Descent,
and BFGS Quasi-Newton method.

A.9 Updater

The Updater class returns the new auxiliary matrices Φ, Y, and D based on the configuration of a Knowledge
Representation object passed to it. The Updater is specific to the type of SNLM being performed. For instance,
there is a different one for Classical-SNLM than for RBF-SNLM because the parameters used are different.



+Gradient(in U : Matrix)

+operator ()(in knowledge : KnowledgeRep, in difference : Matrix, in distance : Matrix, in phi : Matrix) : Matrix

#U : Matrix

Gradient

+GradientDistances(in delta : Matrix, in U : Matrix)

#delta : Matrix

GradientDistances

+GradientSource(in sourceDataset : Matrix, in U : Matrix)

#sourceDataset : Matrix

GradientSource

+operator ()(in knowledge : KnowledgeRep, in difference : Matrix, in distance : Matrix, in phi : Matrix) : Matrix

+WeightsGradient(in U : Matrix)

WeightsGradient

+operator ()(in knowledge : KnowledgeRep, in difference : Matrix, in distance : Matrix, in phi : Matrix) : Matrix

+UniformSpreadsGradientDistances(in delta : Matrix, in U : Matrix)

UniformSpreadsGradientDistances

+operator ()(in knowledge : KnowledgeRep, in difference : Matrix, in distance : Matrix, in phi : Matrix) : Matrix

+UniformSpreadsGradientSource(in sourceDataset : Matrix, in U : Matrix)

UniformSpreadsGradientSource

+operator ()(in knowledge : KnowledgeRep, in difference : Matrix, in distance : Matrix, in phi : Matrix) : Matrix

+VariableSpreadsGradientDistances(in delta : Matrix, in U : Matrix)

VariableSpreadsGradientDistances

+operator ()(in knowledge : KnowledgeRep, in difference : Matrix, in distance : Matrix, in phi : Matrix) : Matrix

+VariableSpreadsGradientSource(in sourceDataset : Matrix, in U : Matrix)

VariableSpreadsGradientSource

Figure 26. Class diagram showing that all gradients derive from the abstract base class gradient so that they can be used
polymorphically.
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